
NASA Technical Memorandum 108517

September 1996

Computer-Aided System Engineering
and Analysis (CASE/A)
Programmer’s Manual, Version 5.0
J. Knox, Editor

NASA Technical Memorandum 108517

September 1996

Computer-Aided System Engineering
and Analysis (CASE/A)
Programmer’s Manual, Version 5.0
J. Knox, Editor
Marshall Space Flight Center • MSFC, Alabama

National Aeronautics and Space Administration
Marshall Space Flight Center • MSFC, Alabama 35812

iii

TABLE OF CONTENTS

Page

1. INTRODUCTION... 1

1.1 Basic Concepts and History 1
1.2 Program Description.. 2
1.3 Manual Organization.. 4

2. SCHEMATIC MANAGEMENT ... 6

2.1 Model Creation, Loading, and Deletion . 6
2.1.1 The Model (.MOD) File . 7
2.1.2 Model Creation, Deletion, and Loading Routines.. 7

2.2 Schematic Manipulation . 8
2.3 Component Manipulation .. 13
2.4 Connection/Icon Manipulation.. 16
2.5 Specialized Graphics Routines .. 17

3. COMPONENT DATA BASE MANAGEMENT ... 21

3.1 File Input/Output Management .. 21
3.2 Interactive Editing.. 21
3.3 Solution System I/O ... 21
3.4 Data Management Framework.. 21
3.5 Data Management System Library Routines . 25

3.5.1 File Input/Output Routines.. 25
3.5.2 Screen Editing Routines.. 27
3.5.3 Specialized Data Management Routines . 27

4. SIMULATION CONTROL AND EXECUTION... 33

4.1 Execution Control Logic Description . 33
4.1.1 Simulation Logic Segment Structure.. 33
4.1.2 Pseudo-Compute Sequence.. 36
4.1.3 User Operations Routines.. 36

4.2 Solution System Library Routines . 37

5. MODEL OUTPUT MANAGEMENT... 41

5.1 Schematic Output.. 41
5.2 Component Data Base Output .. 41
5.3 Simulation Summary .. 41
5.4 Integrated Plot Utility.. 42
5.5 Data Output Options .. 43

5.5.1 Output to the “USERCON” Array .. 43
5.5.2 Custom User Output. 44

5.5.2.1 Writing Data to an ASCII Text File. 44
5.5.2.2 Creating Custom Data Base for Storing Output Data.. 45

5.6 Schematic Connection and Hydraulic Maps .. 47
5.6.1 The .CMP File.. 47
5.6.2 The .FMP File.. 49

iv

TABLE OF CONTENTS

Page

6. UTILITY COMMANDS AND MISCELLANEOUS SYSTEM ROUTINES... 51

6.1 Terminal Settings.. 51
6.1.1 Terminal Setting Command... 51

6.2 Miscellaneous Commands .. 51
6.2.1 Flags.. 51
6.2.2 On-Line Help Information .. 52
6.2.3 VAX/VMS Commands.. 52
6.2.4 Temporary Exit to VAX Editor. 53

6.3 Simulation Control Commands.. 53
6.3.1 Subsystem Heat Load Assignment to CABINS... 53
 6.3.1.1 ASSIGN Command... 53
 6.3.1.2 UNASSIGN Command .. 54
6.3.2 MERGE Operation.. 54

6.4 System Utility Routines . 55
6.5 Model Archive Routines.. 61

7. USER OPERATIONS LOGIC AND INTERNAL CASE/A DATA ACCESS... 63

7.1 OPS Logic Description . 63
7.2 Creation of User OPS Logic .. 63
7.3 CASE/A Internal Data Communication Arrays . 68

7.3.1 The “CON” Array.. 68
7.3.2 The “C” Array . 69
7.3.3 The “PRO” Array .. 72
7.3.4 The “USERCON” Array . 73
7.3.5 The “D” Array . 73
7.3.6 Storage and Retrieval Functions for CASE/A Arrays.. 73

8. ANALYTICAL TECHNIQUES .. 76

8.1 System Pressure Computations .. 76
8.1.1 Matrix Reduction Pressure Solution . 76
8.1.2 Hydraulic Solution.. 76
8.1.3 Stream Classifications . 77
8.1.4 Friction Losses Through Connections.. 78
8.1.5 Pressure Loss Through Components.. 79

8.2 Thermal Network Solution Routines .. 80
8.3 Mass Transfer .. 81
8.4 Thermodynamic Properties .. 81

9. COMPONENT ROUTINES ... 82

9.1 Component Routine Logic Structure.. 82
9.1.1 Initialization Segment.. 83
9.1.2 Iterative Solution Segment . 83
9.1.3 Posttime-Step Wrap-Up Segment .. 84
9.1.4 Postsimulation Wrap-Up Segment.. 84
9.1.5 Internal Fatal Error Condition .. 84

9.2 Component Routines .. 84

v

TABLE OF CONTENTS

Page

APPENDIX A. PREPARATION OF COMPATIBLE COMPONENT SUBROUTINES.. 95

1.0 Graphical Component Icon Construction.. 95
1.1 Step 1: Increase Number of Components. 95
1.2 Step 2: Modify “Drawc” Routine .. 95
1.3 Step 3: Modify “Hit” Routine .. 99
1.4 Step 4: Modify “Locate” Routine .. 100
1.5 Step 5: Modify “Ssout” Routine .. 100
1.6 Step 6: Modify “Pinit” Routine.. 100
1.7 Step 7: Modify “Eqsolve” Routine.. 101
1.8 Step 8: Update CASE/A Object Library.. 101

2.0 Data Base Construction.. 103
2.1 Data Base File Description.. 103

2.1.1 Data Definition File . 103
2.1.2 Binary Data File. 103
2.1.3 Full Screen Editor Templates.. 103
2.1.4 Script File. 104

2.2 Adding/Modifying Component Data Base Files. 104
3.0 Component FORTRAN Routine .. 105

3.1 Data Initialization Segment.. 105
3.2 Iterative Solution Segment.. 106
3.3 Post-Time Step Wrap-Up Segment.. 106
3.4 Postsimulation Wrap-Up Segment.. 106
3.5 Example Component Subroutine–Heater . 107

APPENDIX B. GLOSSARY OF LABELED COMMON BLOCK VARIABLES.. 111

APPENDIX C. THE MODEL (.MOD) FILE... 119

APPENDIX D. INDEX OF CASE/A SUBROUTINES .. 123

vi

LIST OF ILLUSTRATIONS

Figure Title Page

1. CASE/A program sections . 3

2. Hierarchy of graphics routines .. 6

3. SCREDT flow chart . 22

4. EDIT flow chart . 23

5. Example “DDF” file (CABIN data base) . 24

6. SOLVE routine flow chart . 34

7. Example connection map printout. 37

8. Variable output to the USERCON array.. 44

9. Example PLOTSET definition for the USERCON array.. 44

10. Writing custom data to a text file . 45

11. Example variable output using binary files. 45

12. Example code to get values for pump “P1” . 46

13. Example data definition file for custom output . 46

14. Example subsystem schematic.. 47

15. Example connection map (.CMP file) . 48

16. Example hydraulic flow map (.FMP file) . 50

17. The “CON” array.. 70

18. Stream properties and composition arrays .. 71

19. Component “ITYPES” ... 82

20. Component logic flow diagram... 83

A-1. Example code for new routine in Drawc routine .. 96

A-2. MOLSIEV icon layout.. 96

A-3. Example incon graphics code (MOLSIEV icon).. 97

A-4. Example hit box data initialization (MOLSIEV icon) .. 99

A-5. Example hit stream label declaration (MOLSIEV icon).. 100

vii

LIST OF ILLUSTRATIONS (Continued)

Figure Title Page

A-6. Modified library list (LIB4LIST.COM) .. 103

A-7. Example data definition file . 104

A-8. Example source code for an ideal heater component.. 107

C-1. Example subsystem schematic.. 119

C-2. Example model description file (.MOD).. 120

LIST OF TABLES

Table Title Page

1. Simulation control variables .. 35

2. “C” array default constituents.. 72

3. “PRO” array properties list.. 72

B-1. CASE/A common blocks and included variables.. 111

TECHNICAL MEMORANDUM

COMPUTER-AIDED SYSTEM ENGINEERING AND ANALYSIS
PROGRAMMER’S MANUAL, VERSION 5.0

SECTION 1. INTRODUCTION

The Computer-Aided Systems Engineering and Analysis (CASE/A) modeling package was cre-
ated as a generalized system engineering program. CASE/A is a very versatile and useful analytical tool,
especially suited to the support of environmental control and life support system and active thermal
control system (ECLSS/ATCS) development beginning with the system requirements preliminary
design and proceeding through hardware development, integration, test, and operations. The basic archi-
tecture is very flexible and can be adapted to many other systems engineering problems in which the
primary forcing functions are individual components. CASE/A can be used to verify component designs,
examine critical operating conditions and parameters, establish system and subsystem performance, and
determine test conditions and perform failure modes and effects analyses.

The CASE/A system has evolved from the G189A program1 and shares much of the G189A pro-
gram architecture. The CASE/A system is designed for applications in which G189A was used. Compo-
nent routines from the G189A system have been used as models for many of the CASE/A components.
CASE/A does not develop the solution in a traditional continuum mechanics manner similar to systems
improve numerical differencing analyzer (SINDA) or finite element (FE) programs where the solution is
derived by solving a set of differential equations. The CASE/A system solves the problem as a set of
discrete point solutions, i.e., component by component. The approach is practical for systems where the
primary drivers are the upstream/down stream conditions. The CASE/A system is designed to minimize
the engineer/analyst’s time and not necessarily the computer central processing unit (CPU) time.
Attempts have been made to optimize the solution system, but not at the expense of the user. In today’s
world of rapidly advancing computer hardware, CASE/A is a logical approach to optimizing the system
engineer’s time.

It is recommended that both the User’s Manual and the Programmer’s Manual be kept readily
accessible to facilitate learning the CASE/A system. The User’s Manual is intended to guide the user in
the operation of CASE/A, while the Programmer’s Manual is intended to explain the program logic of
CASE/A. Advanced users will find this document a useful reference in understanding the CASE/A
system and in debugging CASE/A models. It is also highly recommended that experienced users locate
the program files on their VAX system and type them to the terminal screen and follow along as they are
discussed in this document.

1.1 Basic Concepts and History

The basic concepts fundamental to the CASE/A generalized ECLSS/ATCS analysis program
include:

• A library of individual “component” subroutines, each of which is used to simulate a particu-
lar type of ECLSS/ATCS component or subsystem. The user specifies component per-
formance parameters to tailor the component to his specific application.

• A data management framework that automatically manages all of the data associated with a
particular ECLSS/ATC component and allows components to be grouped together and easily
identified and manipulated.

2

• A solution system that controls the data transfer between components, provides an orderly
solution of a set of component subroutines used to simulate a system, and allows component
subroutines within the simulations to be easily replaced, modified, or interchanged.

• The capability of allowing the component subroutines to be interconnected with gas or liquid
flow streams consisting of identifiable constituents.

• The use of a set of default parameters to simplify data entry.

CASE/A development has been funded under the NASA Marshall Space Flight Center (MSFC)
contract NAS8-36407 and has been under continuous development since May 1985. The program
structure was based largely on the G189A program with the addition of a graphical user interface for
model construction and an improved data management system. The basic operating shell and component
routine development work was completed in 1986. Overall program enhancements as well as additional
component routine development work continued through 1987. A thorough component routine verifica-
tion program was completed in early 1989, which consisted of validating and documenting atmosphere
revitalization (AR) component model results against core module integration facility (CMIF) phase II
comparative test results obtained from the MSFC space station technology test program. Recent
enhancements to the user interface commands and program initialization code have further increased the
engineer’s productivity with CASE/A. The program currently contains approximately 70,000 lines of
FORTRAN code. Version 5.0 is under MSFC Environmental Control and Life Support Branch configu-
ration control.

1.2 Program Description

The CASE/A program provides a simulation tool for studying the transient performance of an
ECLSS and/or an ATCS. CASE/A performs heat transfer, chemical reaction, mass/energy balance, and
system pressure drop analysis based on user-specified operating conditions. A fluid system is simulated
by connecting individual “components” through gaseous or liquid flow streams. Each particular type of
component is simulated by an individual component subroutine. A component may represent a tee, a
heat exchanger, a cold plate, or a process such as CO2 removal or CO2 reduction. The component sub-
routines are contained in a library that is accessible to the user. Each component is represented by a
unique graphical icon. The user specifies the component interconnections by connecting the components
interactively on the terminal screen. The syntax and user operations are explained in the User’s Manual.

The CASE/A program consists of a main command processor that calls upon four primary sec-
tions as shown in figure 1. The user interfaces with the system through the command processor. The
graphics management system enables the user to graphically create the system configuration to be
modeled. Component, solution, and system data bases are maintained by the data base management
system. The solution system controls the solution process and determines the calling order for the com-
ponents. The component library is where the component object code resides.

The command processor/ graphical interface is described in the User’s Manual. This is the top-
level executive of the system and is the primary interface to the user. Essentially, the command proces-
sor parses the input commands into commands that can be executed by the system. The format of a
command is:

Command;argument 1;argument 2.

Either a blank space or a semicolon can be used as a delimiter to separate the command and its
arguments. Summaries of the commands and their syntax are provided in the User's Manual. The details
of this system are described in section 2.

3

GRAPHICS
ROUTINES

DATA
MANAGEMENT

SYSTEM

SOLUTION
SYSTEM

COMPONENT
LIBRARY

COMMAND
PROCESSOR

CASE/A

Figure 1. CASE/A program sections.

The data management system is based on the McDonnell Douglas Space Systems Company
(MDSSC) technical data management system (TDMS). The data are stored in direct access FORTRAN
files and are accessible only through the data management system or through FORTRAN programs. The
description of the data base management system is provided in section 3. The data management system
also provides the user with a data base management and plotting utility for manipulation and display of
transient data.

The solution system controls the order of solution and provides for the system flags needed to
determine the status of the system for the components. At present the solution order is sorted according
to component type. The solution system is described in section 4.

CASE/A is an open system in that the user can create their own components and add them to the
existing library. A generic blackbox component is provided for short-term applications where the user
does not want to add the component to the system permanently. The components are allowed to have up
to eight separate streams. The limitations are imposed by array dimensions, and some components (such
as the cabin and store components) allow multiple connections to a single stream. Individual streams
normally are expecting a specific constituent. For example, the Bosch component has a hydrogen inlet
that expects hydrogen gas. The system does not check for incompatible connections such as connecting
an air stream to a hydrogen stream. In such cases, diagnostic messages will be issued and the solution
will attempt to proceed, but will generally not converge or will give erroneous results. All connections
must be complete before requesting a solution or the system will terminate and provide error messages.
The details of the component libraries and structure are discussed in section 9.

The CASE/A program has evolved from the G189A and SINDA programs. The architecture is
very similar to G189A and the solution approach is similar to the approach used by SINDA. Thus, this
system should be easy for the experienced G189A programmer to learn. Both CASE/A and G189A use
component libraries and provide a component-by-component solution. The interface data for the compo-
nents are passed through common blocks in both programs, and the component data are stored in a large
array that is common blocked. A comparison of the primary arrays is presented below.

G189A CASE/A PURPOSE

R CON Stores component data
K/V C and PRO The C array contains the constituent data and the

PRO array contains the property data. PRO array
replaces locations 2 to 9 in K/V. C array locations
are similar to location 1 and locations 10 to 19 in
the K/V array.

A, B None The C and Pro arrays are also used as the working
arrays, replacing the A and B arrays.

4

Because the model data are stored graphically, there is no direct comparison of the model data
with G189A models. These data, which includes all components, connections, labels, notes, etc., are
stored in the CASENAME.MOD file. A fundamental difference between CASE/A and G189 is the
mechanism used to store the properties data. G189A uses the TABLE data which are input by the users
in the model definition deck for every problem. CASE/A uses a subroutine called PROPS to calculate
properties for the default constituents. This routine can be modified by the user to calculate properties
for any desired constituent up to a maximum of 41 user-defined constituents. The program must be
recompiled to incorporate the changes.

The solution system utilizes a pseudo-compute sequence (PCS) to control the solution order. The
PCS concept is very similar to the concept used by SINDA to generate a solution. In SINDA, the node
and conductor data are reduced to sequential ordered arrays that define the set of simultaneous equa-
tions. In CASE/A, the PCS is a map of the components and connections and is stored in the IPCS array.
The solution routines march down the IPCS array and solve for each component individually.

1.3 Manual Organization

This section of the Programmer’s Manual has provided a brief evolution and concept outline of
the CASE/A system. Nine more sections, described below, are provided with the intent to familiarize the
experienced CASE/A analyst with the programming concepts of CASE/A and to provide a foundation
from which more detailed models can be developed. The basic structure of this document closely fol-
lows the structure of the CASE/A User’s Manual.2

Section 2 discusses schematic management routines in CASE/A. Specifically discussed are those
routines required to create, load, and delete models; those routines used to manipulate the graphic icons
and connections representing a system; and specialized routines that perform rudimentary tasks such as
drawing lines and circles.

Section 3 describes the data base management system used by CASE/A. Discussed here are rou-
tines that allow editing of data bases and routines used to transfer data between the data base files in cen-
tralized mass storage and CASE/A variables in memory.

Section 4 describes the routines used to control the simulation process. Discussed here are
CASE/A and user-written routines and the logic of the simulation process.

Section 5 describes those routines used to manage the data processed by CASE/A. Described
here are routines that output results in text or graphical form, and routines that output representations of
a system such as connection maps and flow maps.

Section 6 discusses some of the utility commands such as terminal setting routines, on-line help,
and interface routines to VMS, as well as those subroutines used by other routines to perform specific
functions. Such routines perform functions such as interpolation, convergence checking, calculation of
thermal properties, etc.

Section 7 discusses the user-supplied FORTRAN code referred to as OPS logic and how the user
can access data in CASE/A internal storage arrays. OPS logic provides seven entry points at specified
key simulation events where the user can intervene in the solution and customize the simulation. Stream
property/constituent data and component data are maintained in the array data structures described in
this section.

Section 8 provides details regarding the routines used to solve hydraulic, thermal, and mass
transfer networks.

Section 9 provides a description of each component routine available in CASE/A.

5

Appendix A contains a description for adding new components to the CASE/A code.

Appendix B contains a table of the CASE/A global variables that are located in common blocks.

Appendix C contains a format description of the .MOD file that specifies components, connec-
tions, and other information for a model.

Appendix D contains an index of subroutines to help the reader locate a particular routine
description in the manual.

References

1. “G-189A Generalized Environmental/Thermal Control and Life Support System Analysis Computer
Program,” 1977.

2. “Computer-Aided System Engineering and Analysis (CASE/A) User’s Manual—Version 5.0,”
NASA TM–108514, June 1996.

VAX and VMS are trademarks of the Digital Corp. The names of other products and companies
mentioned in this book may be trademarks, trade names, registered trademarks, service marks, or
service names.

6

SECTION 2. SCHEMATIC MANAGEMENT

2.1 Model Creation, Loading, and Deletion

The graphical interface performs three major functions including:

1. Developing a graphical representation of the model under consideration

2. Interacting with a data base management system to store and manipulate equipment parame-
ters

3. Storing the graphical representation in a format that is compatible with the solution routines.

The majority of the code in the graphical interface program is used to perform the first function
listed above, developing the graphical representation. The data base management function relies heavily
on the TDMS, which is described in section 3 of this document.

The graphical user interface is a graphics-based, command-driven package developed on the
Digital Equipment Corporation (DEC) VAX minicomputer series and uses the Tektronix 4014-1™
terminal (or compatible) as the primary user input/output device. The interface uses a central command
processor routine to accept user commands in text form and invoke the appropriate subroutines for
action. The command processor separates the user input line into the command and optional arguments
using the semicolon (;) or blank space as a general delimiter between fields.

The routines that comprise the graphical interface portion of CASE/A are broken down into dis-
tinct categories for discussion within this document. These categories include those routines pertaining
to (1) schematic manipulation, (2) component manipulation, (3) connection manipulation, and (4)
specialized graphics routines. These routines are shown hierarchically in figure 2. There are several
routines that combine elements of the graphics/data management and graphics/solution system, and
these routines will be discussed in this section of the document as well as their corresponding sections.

GRAPHICAL
INTERFACE
GRAPHICAL
INTERFACE

SCHEMATIC
MANAGEMENT

SCHEMATIC
MANIPULATION

COMPONENT
MANAGEMENT
COMPONENT
MANIPULATION

CONNECTION
MANAGEMENT
CONNECTION
MANIPULATION

SPECIALIZED
ROUTINES

SPECIALIZED
ROUTINES

BDN
BDNSHT
BLF
BLFSHT
BLOCK
BRT
BRTSHT
BUP
BUPSHT
CIRCLE
DRAWC
ELLIPSE
LTSEMCIR
RTSEMCIR
SEMIRECT
HITBOX

CONECT
DELCN
HIT

BCK_GD_CLR
COLOR
DIR
DIST
FRAME1
HC
HCALL
HCDMPSV
RESET1
SOLICIT
TEK_ADV
TEK_HOM
TRANSBOD
TRANSCON
TRANSLT
TRANSLT1

GRBUFR
GRCUSR
GRCHRZ
GRCOPY
GRDRAW
GRERAS
GRINIT
GRLBAB
GRLBCT
GRMOVE
GRSCREEN
GRTERM

COPYAL
CUTALL
DELEQ
DELLAB
DELNOTE
DRLABL
DRNOTE
LABL
LOCATE
MOVALL
MOVEIT
MOVLAB
MOVNOT
NOTE
REDRAW
RENEQ
RNSS
ROTATE
SUBSYS

Figure 2. Hierarchy of graphics routines.

7

The following sections describe the routines associated with the development of the graphical
representation of a given model. The actual model file CASENAME.MOD is discussed first. The sub-
routines that affect this file are presented next.

2.1.1 The Model (.MOD) File

All information necessary to create the subsystem screens is contained in the “.MOD” file. The
first section contains model header data such as the number of components and connections in the
model. This section serves as a header to describe the number of items contained in the following sec-
tions. The second section contains data describing each component in the model and its location on the
schematic and assignment to a cabin. The third section contains information describing the connections
between the components. The last two sections contain data describing user-defined blackbox compo-
nents or notes data. The last two sections may not be present if the model does not contain these items.
Refer to appendix C for a more detailed description of the “.MOD” file.

Since this file contains graphical information, it is highly recommended that this file not be
modified through means other than the CASE/A interface (i.e., one should not use the VAX editor to
modify this file). The MOD file is strictly formatted and contains a considerable amount of unlabeled
data. As such, it is extremely difficult to debug a corrupted MOD file. Unlike other files associated with
CASE/A (e.g., .BAK, .CMP, .FMP, .LPP), the MOD file MUST be present to run a given CASE/A
model. All other files are created for the user by CASE/A. Unintentional editing errors introduced into a
MOD file will corrupt a CASE/A model even to the point of rendering it useless. Should the “.MOD”
file become corrupted, the user may be able to recover it from the “.BAK” file usually contained in the
same directory.

2.1.2 Model Creation, Deletion, and Loading Routines

The following section describes the routines that, in conjunction with the data in the MOD file
described above, are used to create or load a case into the CASE/A system.

Subroutine DELCAS

This routine invoked from CASEAMAIN. It deletes the current case from the data base records.
It does NOT delete the files CASENAME.MOD, CASENAME.LPP, CASENAME.CMP, etc.
After verifying the action, DELCAS opens each data base and finds a record with a case name
match. The record is then deleted.

Functions and subroutines referenced:

DELREC EQOPEN FRAME1 RANDIN TEK_ADV

Subroutine DIR

This command routine allows the user to view a listing of all components in the case grouped
according to subsystem name. The listing is directed to the terminal screen.

Functions and subroutines referenced:

CLS DIR_ADV FRAME1 PTMOD RJUSTIFY TEK_ADV
TOGGLE_SCREEN

Subroutine CLOADCASE(NAME)

This routine reads the case data from the case definition file “CASENAME.MOD” and loads the
corresponding data storage arrays for each data segment.

8

Functions and subroutines referenced:

CTOLOWERC CTOUPPERC DUPLICATE EQOPEN
FRAME1 RANDIN RANDOU
TEK_ADV

Subroutine CNEWCASE(NAME)

This routine is used to create a new case. It copies the default record for LABELS, CONTROL,
PLOTSET and USERCON data bases to a new record with the new case name. It also initializes
counters such as the number of cabins, connections, etc. Control is returned to the
CASEA$MAIN upon completion.

Functions and subroutines referenced:

DUPLICATE EQOPEN FRAME1 RANDIN RANDOU
SAVE TEK_ADV

Subroutine SAVE

This command routine saves the current case configuration data in the case definition file
“CASENAME.MOD”.

Functions and subroutines referenced:

CTOLOWERC PTMOD TEK_ADV

Subroutine SAVEAS(NAME)

This routine creates a new case from the current case by duplicating all the data base entries with
the new case name NAME. It also creates a new MOD file. The new case becomes the active
case.

Functions and subroutines referenced:

DUPLICATE EQOPEN FRAME1 ISTAT MODBAK RANDIN
RANDOU SAVE TEK_ADV

2.2 Schematic Manipulation

The routines classified under this heading include all of those that pertain to the graphics setup
on the working terminal screen. The functions provided by CASE/A to manage screen schematics
include locating equipment; deleting equipment; adding or deleting labels and notes to a subsystem
screen; moving equipment, notes, or labels to any location on a subsystem screen; and rotating equip-
ment to another orientation in 90˚ intervals in order to make schematics more presentable. The syntax of
the aforementioned operations are outlined in table 2.1-1 NASA TM–108514, “Computer-Aided System
Engineering and Analysis (CASE/A) User’s Manual—Version 5.0.” A brief discussion of subroutines
classified under this section, how they work, and the argument lists involved in their call statements
follows.

9

Subroutine COPYALL

This routine invoked by the COPYALL command copies a portion (or all) of a subsystem screen
to a new or existing subsystem by drawing a box around the components (500 maximum) to be
copied. It includes notes, connections, and labels as well as components. Note that the blackbox
component cannot be copied, and the copied items must be 30 pixels inside from the screen
frame.

Functions and subroutines referenced:

CDCODE CTOUPPERC CILLCHAR DUPLICATE
EQOPEN FRAME1 GRALPH GRCUSR
GRDRAW GRMOVE ISTAT RANDIN
RANDOU REDRAW SAVE TEK_ADV
TOGGLE_SCREEN

Subroutine CUTALL

Deletes a portion (or all) of a subsystem screen by drawing a box around the components to be
deleted. Notes, labels, and connections are also deleted.

Functions and subroutines referenced:

DELEQ DELNOTE GRALPH GRCUSR
GRDRAW GRMOVE SAVE TEK_ADV
TOGGLE_SCREEN

Subroutine DELEQ(ICUT)

A command routine that allows the user to delete an existing component. The crosshairs are acti-
vated after the command is entered, and the component to be deleted is determined by locating
the intersection of the crosshairs to within a maximum radius of 60 pixels to the center of that
component. The equipment list (IEL) array, connection data (ICL) array, and component data
base files are updated accordingly. All connections to the component are deleted, and the total
number of connections (NCON) and total number of components (NEQ) are decremented.

 Functions and subroutines referenced:

CDCODE CTOUPPERC DELREC DIST
EQOPEN GRCUSR GRALPH ISTAT
RANDIN TEK_ADV TOGGLE_SCREEN

Subroutine DELLAB(ICUT)

A command routine that allows the user to delete an existing label from the subsystem screen.
The crosshairs are activated after the command is entered, and the label to be deleted is deter-
mined by locating the crosshair coordinates to within a maximum radius of 60 pixels of the label
center. The label data (ILB) array is updated accordingly, and the total number of labels (NLAB)
is decremented.

Functions and subroutines referenced:

DIST GRCUSR TEK_ADV TOGGLE_SCREEN

10

Subroutine DELNOTE(ICUT)

A command routine that allows the user to delete an existing note from the subsystem screen.
The crosshairs are activated after the command is entered, and the note to be deleted is
determined by locating the crosshair coordinates to within a maximum radius of 60 pixels of the
note center. The note data (INOTE) array is updated accordingly, and the total number of notes
(NNOTE) is decremented.

Functions and subroutines referenced:

DIST GRCUSR TEK_ADV
TOGGLE_SCREEN

Subroutine DRLABL (KLAB, MEQ)

A routine that draws the alphanumeric label and specified value for label number KLAB associ-
ated with relative equipment number MEQ. The labels data are contained within the array ILB.

Functions and subroutines referenced:

GRALPH GRCHRZ GRLBAB KAM2AS
KAS2AM SMVBITS TEK_ADV

Subroutine DRNOTE (K)

A routine that draws the alphanumeric note for note number K. The notes data are contained
within the array INOTE.

Functions and subroutines referenced:

GRALPH GRCHRZ GRLBAB GRLBCT
TEK_ADV

Subroutine LABL

A command routine that allows the user to place an alphanumeric label that displays individual
data base of stream characteristics for a given component on the subsystem screen. The labels
data are contained in the array ILB, and the variable NLAB records the total number of labels in
the case.

Functions and subroutines referenced:

CDCODE DIST DRLABL HIT
GRALPH GRCUSR TEK_ADV
TOGGLE_SCREEN

Subroutine LOCATE

A command routine that allows the user to locate a new component in the active (currently dis-
played) subsystem. The equipment type and component name are command arguments. The
crosshairs are activated after the command is entered and the component location is determined
by the user. The component icon is then drawn on the screen at the indicated coordinates. The
case equipment list is updated, the total number of equipment pieces (NEQ) is updated, and a
new entry with default values is created in the component equipment data base file.

11

Functions and subroutines referenced:

CDCODE CLS CILLCHAR CTOUPPERC
DRAWC DUPLICATE EQOPEN GRALPH
GRCUSR RANDIN RANDOU SAVE
TEK_ADV TOGGLE_SCREEN

Subroutine MOVALL

Moves a portion (or all) of a subsystem screen by drawing a box around the components (200
max) to be moved. Notes, labels, and the intermediate endpoints of connections inside the box (if
either endpoint is on a component inside the box) are also moved.

Functions and subroutines referenced:

GRALPH GRCUSR GRDRAW GRMOVE
SAVE TEK_ADV TOGGLE_SCREEN

Subroutine MOVEIT

A command routine that allows the user to move an existing component to a new location on the
current subsystem screen. The crosshairs are activated after the command is entered and the
component to be moved is selected by the user. The crosshairs remain active, and the new loca-
tion on the screen is designated by the user. The redraw command should be issued to clean the
screen as the icon will not be erased from its previous position. The (IEL) array is updated to
reflect the new component icon coordinates.

Functions and subroutines referenced:

DIST DRAWC GRALPH GRCUSR
TEK_ADV

Subroutine MOVLAB

A command routine that allows the user to move an existing label to a new location on the cur-
rent subsystem screen. The crosshairs are activated when the command is entered and the label to
be moved is selected by the user. The crosshairs remain active, and the new location on the
screen is designated by the user. The redraw command should be issued to clean the screen as the
icon will not be erased from its previous position. The ILB array is updated to reflect the new
label coordinates.

Functions and subroutines referenced:

DIST DRLABL GRCUSR TEK_ADV
TOGGLE_SCREEN

Subroutine MOVNOTE

A command routine that allows the user to move an existing note from the subsystem screen. The
crosshairs are activated after the command is entered and the note to be moved is selected by the
user. The crosshairs remain active, and the new location on the screen is designated by the user.
The redraw command should be issued to clean the screen as the icon will not be erased from its
previous position. The note data (INOTE) array is updated accordingly.

12

Functions and subroutines referenced:

DIST DRNOTE GRCUSR TEK_ADV
TOGGLE_SCREEN

Subroutine NOTE

A command routine that allows the user to place an alphanumeric note on the active subsystem
screen. The note character size, justification code, and character string are the command argu-
ments. The crosshairs are activated when the command is entered and the note location is
selected by the user. The note is then displayed on the screen at the indicated coordinates. The
note data array (INOTE) is updated, and the total number of notes (NNOTE) is incremented.

Functions and subroutines referenced:

CDCODE DRNOTE GRCUSR TEK_ADV
TOGGLE_SCREEN

Subroutine REDRAW(JFLAG)

This subroutine will redraw the current subsystem screen.

Functions and subroutines referenced:

CLS DRAWC DRLABL DRNOTE
FRAME1 GRDRAW GRDRAWD GRMOVE
RESET1 TRANSBOD TRANSCON TRANSLT1
TEK_HOM

Subroutine RNSS

This subroutine allows the user to rename a subsystem.

Functions and subroutines referenced:

CDCODE CILLCHAR CTOUPPERC EQOPEN
RANDIN RANDOU TEK_ADV

Subroutine ROTATE

A command routine that allows the user to change the orientation of a component on the current
subsystem screen. The rotation angle is the command argument. The crosshairs are activated
when the command is entered and the component to be rotated is selected by the user. The orien-
tation of the component is then changed by “rotating” the component in a clockwise direction for
positive rotation angle values relative to the existing orientation. The screen should be refreshed
by the RD command since the previous orientation of the component will not be erased.

Functions and subroutines referenced:

CDCODE DIST DRAWC GRCUSR
TEK_ADV TOGGLE_SCREEN

13

Subroutine SUBSYS

A command routine that allows the user to activate an existing subsystem or create a new subsys-
tem. The subsystem name is input as the command argument, and the subsystem schematic is
automatically drawn on the terminal screen.

Functions and subroutines referenced:

CDCODE CILLCHAR CTOUPPERC REDRAW
TEK_ADV

2.3 Component Manipulation

The routines classified under this heading include those that are used to draw component icons
(graphical representations of certain equipment types) on the subsystem screen. The CASE/A icon
combines the equipment graphical representation, equipment name and type labels, and “hit boxes” to
provide the complete component picture on the subsystem screen. The term “hit box” refers to a small
square box of 10 by 10 pixels that is attached to the CASE/A component (one box per component
stream) and allows the user to connect incoming and outgoing streams of successive components. Each
component also has a “HIT DOT”, used for the connection of controllers or timers. The component
graphical representation and hit boxes are drawn with graphics routines from the TDMS library. At the
present time, all component icons are limited to geometric shapes that can be formed from the following
base structures; (1) circle, (2) left semicircle, (3) right semicircle, (4) square, and (5) straight line. The
main driver routine for component icon creation is subroutine DRAWC. The DRAWC routine takes data
points from the various component icon arrays (declared in DRAWC) and uses the graphics routines
from the TDMS library to create a graphical representation of the component. A complete listing and
description of these routines follows. Due to the complex nature of inserting a new component icon in
the existing FORTRAN code, a step-by-step guide to this operation is included in appendix A.

Subroutine BDN (IX, IY, K, IROT,ISTM)

A routine that draws a “hit box” 10 pixels square with the center located at an X-coordinate of IX
and Y-coordinate of IY-40. A line segment with a 35 pixel length is drawn from IY to IY-35 and
has an arrow symbol drawn according to the code variable K. A value of K = –1 causes the arrow
to point away from the box while a value of +1 causes the arrow to point toward the box. The
variable (IROT) indicates the orientation angle of the component, and ISTM indicates the
relative stream number of the component. This routine is used to draw the stream indicators on
the component icons.

Functions and subroutines referenced:

BLF BRT BUP CIRCLE
GRDRAW GRMOVE HITBOX

Subroutine BDNSHT (IX, IY, K, IROT,ISTM)

Same as the BDN routine except the “hit box” is located 20 pixels instead of 40 pixels away
from the (IX, IY) point.

Functions and subroutines referenced:

BLFSHT BRTSHT BUPSHT CIRCLE
GRDRAW GRMOVE HITBOX

14

Subroutine BLF (IX, IY, K, IROT,ISTM)

Same as the BDN routine except the “hit box” is located 40 pixels to the left of (IX, IY) point.

Functions and subroutines referenced:

 BDN BRT BUP CIRCLE
GRDRAW GRMOVE HITBOX

Subroutine BLFSHT (IX, IY, K, IROT,ISTM)

Same as the BLF routine except the “hit box” is located 20 pixels instead of 40 pixels away from
the (IX, IY) point.

Functions and subroutines referenced:

BDNSHT BRTSHT BUPSHT CIRCLE
GRDRAW GRMOVE HITBOX

Subroutine BLOCK (IXSIZ, IYSIZ, IX, IY, IROT)

A routine that draws a rectangle with X length of IXSIZ pixels and a Y length of IYSIZ pixels
located around the centroid of point (IX, IY). The variable IROT indicates the orientation angle
of the component.

Functions and subroutines referenced:

GRDRAW GRMOVE

Subroutine BRT (IX, IY, K, IROT,ISTM)

Same as the BDN routine except the “hit box” is located 40 pixels to the right of the (IX, IY)
point.

Functions and subroutines referenced:

BDN BLF BUP CIRCLE
GRDRAW GRMOVE HITBOX

Subroutine BRTSHT (IX, IY, K, IROT,ISTM)

Same as the BRT routine except the “hit box” is located 20 pixels instead of 40 pixels away from
the (IX, IY) point.

Functions and subroutines referenced:

BDNSHT BLFSHT BUPSHT CIRCLE
GRDRAW GRMOVE HITBOX

Subroutine BUP (IX, IY, K, IROT,ISTM)

Same as the BDN routine except the “hit box” is located 40 pixels above the (IX, IY) point.

15

Functions and subroutines referenced:

BDN BLF BRT CIRCLE
GRDRAW GRMOVE HITBOX

Subroutine BUPSHT (IX, IY, K, IROT,ISTM)

Same as the BUP routine except the “hit box” is located 20 pixels instead of 40 pixels away from
the (IX, IY) point.

Functions and subroutines referenced:

BDNSHT BLFSHT BRTSHT CIRCLE
GRDRAW GRMOVE HITBOX

Subroutine CIRCLE (IRAD, IX, IY)

This routine draws a circle with radius IRAD centered at point (IX, IY) on the terminal screen.

Functions and subroutines referenced:

GRDRAW GRMOVE

Subroutine DRAWC (KEQ)

This routine draws the graphical icon for the component with relative equipment number KEQ.
The orientation of the icon is determined by the rotation angle contained in array element NROT
(KEQ). This routine serves as the driver routine for icon representation and, hence, it uses many
of the TDMS graphics library routines in order to draw the component graphically. A detailed
description of how this routine must be modified in order to add new component icons to the
existing list is found in appendix A.

Functions and subroutines referenced:

BDN BLF BLOCK BRT
BUP CIRCLE COLOR GRALPH
GRCHRZ GRDRAW GRLBAB GRLBCT
GRMOVE LTSEMCIR RTSEMCIR
SEMIRECT TRANSLT

Subroutine HITBOX(IX,IY,IXOFF,IYOFF,ISTM)

This routine draws the component icon hit box at a location of (IX+IXOFF, IY+IYOFF).

Functions and subroutines referenced:

BLOCK

Subroutine LTSEMCIR (IRAD, IX, IY, IOFF, IROT)

This routine draws a semicircle of radius IRAD located IOFF pixels along the X-axis from the
coordinates (IX, IY). The positive clockwise rotation angle is specified by IROT.

16

Functions and subroutines referenced:

GRDRAW GRMOVE

Subroutine RTSEMCIR (IRAD, IX, IY, IOFF, IROT)

This routine draws a semicircle of radius IRAD located IOFF pixels along the X-axis from the
coordinates (IX, IY). The positive clockwise rotation angle is specified by IROT.

Functions and subroutines referenced:

GRDRAW GRMOVE

Subroutine SEMIRECT(IH,IW,IX,IY,IROT)

This routine draws two parallel lines at IH/2 or IW/2 from (IX,IY) with a length of W or H
depending on orientation. A rotation angle of 0 or 180 would result in horizontal lines.

Functions and subroutines referenced:

GRDRAW GRMOVE

2.4 Connection/Icon Manipulation

The connection management routines include those that affect component icon stream connec-
tions. CASE/A provides the user capability to add or delete a connection within the subsystem screen.
The driver routines for the aforementioned commands are CONECT and DELCN, both of which call the
subroutine HIT in order to verify a valid connection or deletion argument. The HIT routine checks to
insure that the user has started and concluded the connect or delete process within the boundaries of a
component hit box, otherwise the routine will not accept the user prompt and return control to the com-
mand processor. Following is a description of each routine and its arguments.

Subroutine CONECT

This command routine allows the user to specify an interconnect path between connection
streams (a component such as a cabin must be connected to itself in the special case where heat
transfer between the cabin and the surroundings is needed but there is no net flow into or out of
the cabin). The crosshairs are activated when the command is entered and connections are
resolved by determining which “hit boxes” of the target component(s) are specified by the user.
The ICL array records, the connection data, and the total number of connections NCON are
updated.

Functions and subroutines referenced:

CDCODE GRALPH GRCUSR GRDRAW
GRDRAWD GRMOVE HIT TEK_ADV
TOGGLE_SCREEN

Subroutine DELCN

A command routine that allows the user to delete an existing interconnect path between compo-
nent(s). The crosshairs are activated as the command is entered and the connection to be deleted
is determined by locating the “hit boxes” indicated by the user. The (ICL) array is updated
accordingly along with the total number of connections NCON.

17

Functions and subroutines referenced:

GRALPH GRCUSR HIT TEK_ADV
TOGGLE_SCREEN

Subroutine HIT (IX, IY, JEQ, NSTR,IXC,IYC)

This routine is used in the determination of interconnect paths between components. The routine
determines the relative equipment number JEQ and stream NSTR, if any, which correspond to a
“hit box” located at screen coordinates (IX, IY). A value of 0 for NSTR is returned if no “hit
box” is located at the given set of coordinates. The active subsystem screen is the basis for the hit
determination. The hit box data for each component is contained in arrays NST, IXD, and IYD.
IXC and IYC are absolute locations of the hit box centers and are used by CONECT to draw
connections on the subsystem screen.

Functions and subroutines referenced:

DIST RESET1 TRANSBOD TRANSCON
TRANSLT1

2.5 Specialized Graphics Routines

The routines listed as specialized graphics operations include those that can be invoked by the
user to change or enhance the current screen characteristics. Many of these routines are called by rou-
tines whose categories fall in the above sections. For example, if the user entered the subsystem com-
mand in order to display a given subsystem, the specialized routine GRERAS (which erases the graphics
window) would be called so that the new subsystem schematic would be drawn on a blank screen rather
than over the existing screen. A complete description of all the routines categorized under this section
heading follows. Low level graphics routines (with the prefix “GR”) are part of TDMS and only their
function is listed here.

Subroutine BCK_GD_CLR(IBACKGD)

This routine will set the background color index in the graphics mode. This is for Tektronix™
terminals only. Only solid colors are supported in this routine. The background color is specified
in the HLS system, i.e., H-hue, L-lightness, S-saturation. Blue is 0,50,100. Colors are based on
the factory defaults.

Functions and subroutines referenced:

KBIT

Subroutine COLOR(INDEX)

This routine will set the color index for the line in the graphics mode. This is for Tektronix™
terminals only.

Functions and subroutines referenced:

KBIT GRALPH

Subroutine FRAME1

18

This routine draws the borders and titles for the subsystem screen page layout. It is invoked on a
redraw “RD”, redraw plus “RD+”, or subsystem “SS;name” command.

Functions and subroutines referenced:

CLDRAI CLDRIA GRALPH GRCHRZ
GRERAS GRLBAB GRLBCT GRMOVE
PTMOD SYSCLK TEK_HOM

Subroutine GRALPH

This routine dumps the output buffer.

Subroutine GRCUSR (ICHAR, IX, IY)

This routine activates the graphics crosshairs so the cursor can be positioned by the user. The
routine returns ICHAR, ADE (ASCII decimal equivalent) of the keyboard character depressed. It
also returns the screen coordinates (IX, IY).

Subroutine GRCHRZ (ISIZ)

This routine sets the character size to a value of ISIZ, which can take on the values 1, 2, 3, or 4
with 1 being the largest and 4 the smallest.

Subroutine GRCOPY

This library routine generates a hard copy of the screen contents.

Subroutine GRDRAW (IX, IY)

This library routine draws a line from the present screen coordinates to the location of point (IX,
IY).

Subroutine GRERAS

This routine erases the screen without changing the mode or current location of the cursor.

Subroutine GRINIT

This routine initializes the terminal and terminal status area.

Subroutine GRLBAB (IX, IY, ISTRING, LSTRING)

This routine displays an alphanumeric label string (ISTRING) of length (LSTRING) starting at
the screen coordinates (IX, IY).

Subroutine GRLBCT (IX, IY, ISTRING, LSTRING)

This routine displays an alphanumeric label string (ISTRING) of length (LSTRING) centered
about the screen coordinates (IX, IY).

Subroutine GRMOVE (IX, IY)

This routine moves the cursor from the current position to the screen coordinates (IX, IY).

19

Subroutine GRSCREEN(IWIDE)

This routine sets the screen width based on the value of IWIDE.

Subroutine RESET1 (IREC)

This routine sets the correct values in the memory arrays so that the component JEQ of equip-
ment type KEQ is drawn in the desired orientation.

Functions and subroutines referenced: NONE

Subroutine TEK_ADV

This routine is used when the terminal is a Tektronix™. It is used to control the cursor location
for overstrike terminals. It prevents overwriting command lines and graphics.

Functions and subroutines referenced:

FRAME1 GRALPH GRCHRZ GRERAS
GRMOVE KBIT REDRAW TEK_HOM

Subroutine TEK_HOM

This routine homes the cursor on the Tektronix™ terminal.

Functions and subroutines referenced:

GRALPH GRCHRZ GRMOVE

Subroutine TRANSBOD (JEQ, IXC, IYC)

This routine returns the coordinates (IXC, IYC) of the control hit dot on the main body of the
icon for equipment number JEQ based on an orientation angle of IRO that is held in the
NROT(JEQ) array location.

Functions and subroutines referenced: NONE

Subroutine TRANSCON(JEQ, NSTR, IXC, IYC)

This routine returns the coordinates (IXC, IYC) of the control hit dot on the stream NSTR of the
icon for equipment number JEQ based on an orientation angle.

Functions and subroutines referenced: NONE

Subroutine TRANSLT (IX, IY, IROT, IARRAY, JARRAY)

This routine adjusts the default orientation icon data contained in array IARRAY so the icon is
drawn in orientation specified by angle IROT. The adjusted data are returned in the array
JARRAY. The pivot coordinates are specified by (IX, IY).

Functions and subroutines referenced: NONE

20

Subroutine TRANSLT1(JEQ,KEQ)

This routine adjusts the default orientation of the component hit boxes.

Functions and subroutines referenced: NONE

21

SECTION 3. COMPONENT DATA BASE MANAGEMENT

The data management system is based on the McDonnell Douglas TDMS. This system is used to
manage all of the CASE/A files including the component and system control files. Output files can be
managed by the user within CASE/A in the integrated plot utility (IPU), both of which can be utilized
for plotting and tabulating the results. For a complete description of the IPU see section 5.4 of the user’s
manual.

3.1 File Input/Output Management

The file I/O is managed through the primary routines: CEDIT, EQOPEN, and EQLOAD. The
CEDIT routine is used in the interactive mode to display or modify the contents of the component, con-
trol, plot, label, or usercon data base parameters. The other routines are used to open a data base
(EQOPEN), and load all of the data from a data base to the CASE/A system (EQLOAD).

3.2 Interactive Editing

The user can modify a data base parameter through the “ED” or “E” commands. The command
processor will call the EDIT routine when either of the above commands is called. The “E” command
(4014 graphics mode) allows the user to designate the component to be modified with the crosshairs.
The “ED” command (VT100 text mode) will list all of the components of the type requested and solicit a
choice from the user. If the user is working on a VT100 compatible terminal (determined by the variable
ITMNL), the SCREDT (screen edit) subroutine will display the data base parameters on an edit screen
and the user may change the data by simply typing over the old data. To advance to the next field, the
user should press the return or the TAB key. This routine is depicted in figure 3. A flow chart of the
EDIT routine is depicted in figure 4.

3.3 Solution System I/O

The solution system I/O is performed at the beginning and at the very end of the simulation to
minimize disk I/O. All of the data for a given component are loaded and unloaded during these periods.
Any modification to the CON array data must occur after the array is loaded. During simulation wrap-
up, the data for each component is saved to the component data base files. During the save operation, the
new component data will replace existing data for that component record.

3.4 Data Management Framework

The data for each component are stored in a direct access binary file by the name of
COMPONENTNAME.DAT (PUMP.DAT, MOLSIEV.DAT, etc.). This file contains data according to
the format specified by a “Data Definition File” COMPONENTNAME.DDF. These files typically reside
in the [CASEA.CASEA_V5.DATA] centralized component data directory, which must be defined by
the VMS LOGICAL NAME CASEA$DATA. A typical “DDF” is shown in the example in figure 5. The
DDF begins with a data line (header record) that provides the following characteristics of the data base:

1. Record length in words

2. Number of items in each record (attributes)

3. Item location of the modification date item

4. Maximum number of records for this data base

22

5. Item location of the security password

6. Item location for the “point up” pointer for chained records (usually zero)

7. Item location for the “point down” pointer for chained records (usually zero).

SCREDTSCREDT

IF CURSOR PICKIF CURSOR PICK

TURN ON
GRAPHICS

SCREEN

TURN ON
GRAPHICS

SCREEN

READ CURSOR
LOCATION

READ CURSOR
LOCATION

DETERMINE
WHICH

COMPONENT WAS
PICKED

DETERMINE
WHICH

COMPONENT WAS
PICKED

IS EQUIP A
BUBBLE

IS EQUIP A
BUBBLE

GET COMPONENT
NAME

GET COMPONENT
NAME

OPEN DATA BASE
FILE

OPEN DATA BASE
FILE

FIND RECORD FOR
THAT EQUIP.

FIND RECORD FOR
THAT EQUIP.

READ DATABASE
RECORD

READ DATABASE
RECORD

DRAW EDIT
SCREEN

DRAW EDIT
SCREEN

USER CHANGE
COMPONENT

FEILDS

USER CHANGE
COMPONENT

FEILDS

WERE ANY
FIELDS

CHANGED

WERE ANY
FIELDS

CHANGED

UPDATE THIS
DATABASE
RECORD

UPDATE THIS
DATABASE
RECORD

IS THIS
"FASTEDIT"

IS THIS
"FASTEDIT"

FIND AND UPDATE
ALL RECORDS

FOR THIS CASE
AND SUBSYSTEM

FIND AND UPDATE
ALL RECORDS

FOR THIS CASE
AND SUBSYSTEM

EXITEXIT

DETERMINE
COMPONENT

TYPE

DETERMINE
COMPONENT

TYPE

Y

N

N

Y

Y

N

N

Y

EXITEXIT

Figure 3. SCREDT flow chart.

23

EDITEDIT

IF
COMAND WAS

"TYPE"

IF
COMAND WAS

"TYPE"

IF
COMMAND WAS

"E"

IF
COMMAND WAS

"E"

IF
TERM IS VT100, PC,

GRAPHON

IF
TERM IS VT100, PC,

GRAPHON

IF
TYPE NOT

 ON COMMAND
LINE

IF
TYPE NOT

 ON COMMAND
LINE

DECODE
COMMAND LINE

AND DETERMINE
COMPONENT

DECODE
COMMAND LINE

AND DETERMINE
COMPONENT

PROMPT USER
FOR COMPONENT

TYPE

PROMPT USER
FOR COMPONENT

TYPE

OPEN
APPROPRIATE

DATABASE FILE

OPEN
APPROPRIATE

DATABASE FILE

READ RECORD
FOR CURRENT

CASE AND
SUBSYSTEM

READ RECORD
FOR CURRENT

CASE AND
SUBSYSTEM

IF NO
RECORD
EXISTS

IF NO
RECORD
EXISTS

ADD DEFAULT
RECORD OR EXIT
(PROMPT USER
FOR CHOICE)

ADD DEFAULT
RECORD OR EXIT
(PROMPT USER
FOR CHOICE)

INITIALIZE EDIT
SCREEN

INITIALIZE EDIT
SCREEN

DISPLAY DATA
(ONE PAGE)

DISPLAY DATA
(ONE PAGE)

PROMPT USER
FOR CHANGES OR

COMMAND

PROMPT USER
FOR CHANGES OR

COMMAND

IF
COMMAND

= 1

IF
COMMAND

= 1

DISPLAY NEXT
PAGE OF DATA
DISPLAY NEXT
PAGE OF DATA

IF
COMMAND

= -1

IF
COMMAND

= -1

DISPLAY
PREVIOUS PAGE

OF DATA

DISPLAY
PREVIOUS PAGE

OF DATA

IF
COMMAND

= 0

IF
COMMAND

= 0

STORE NEW
VALUE OF
SELECTED

PARAMETER IN
MEMORY

STORE NEW
VALUE OF
SELECTED

PARAMETER IN
MEMORY

UPDATE
DATABASE

RECORD WITH
STORED VALUES

UPDATE
DATABASE

RECORD WITH
STORED VALUES

DISPLAY NEW
RECORD ON

SCREEN

DISPLAY NEW
RECORD ON

SCREEN

RETURN TO MAINRETURN TO MAIN

DETERMINE
COMPONENT

TYPE VIA CURSOR
PICK

DETERMINE
COMPONENT

TYPE VIA CURSOR
PICK

DETERMINE
COMPONENT

TYPE AND NAME

DETERMINE
COMPONENT

TYPE AND NAME

OPEN DATABASE
AND READ
RECORD

OPEN DATABASE
AND READ
RECORD

DISPLAY
CONTENTS ON

SCREEN

DISPLAY
CONTENTS ON

SCREEN

RETURN TO MAINRETURN TO MAIN

CALL SCREDTCALL SCREDT

RETURN TO MAINRETURN TO MAIN

Y

N

Y

N

N

Y

Y

N

N

Y

Y

Y

N

N

Y

N

Figure 4. EDIT flow chart.

60 57 56 500 57 0 0 ! DDF header record
002 002 001 CASE NAME ! 2 word alpha field starts in word 1
002 002 003 SUBSYSTEM NAME
002 002 005 COMPONENT NAME
003 001 007 NO. OF INPUTS ! 1 word real field starts in word 7
003 001 008 NO. OF OUTPUTS
003 001 009 NO. OF BENCHMARKS
003 001 010 CDEL RXCC
003 001 011 TDEL RXCC
003 001 012 PDEL RXCC
003 001 013 POWER,WATTS
003 001 014 WEIGHT, LBM
003 001 015 VOLUME, FT3
003 001 016 CABIN LEAKAGE, LBM/DAY
003 001 017 EXPER VENT AIR LOSS, LBM/DAY
003 001 018 EVA AIR LOSS, LBM/DAY
003 001 019 CABIN VOLUME (CONSTANT), FT3
003 001 020 RELIEF VALVE SETPOINT PRESS,PSIA
003 001 021 INITIAL CABIN AIR TEMP, DEG-F
003 001 022 INITIAL TOTAL PRESS, PSIA
003 001 023 INITIAL O2 PARTIAL PRESS, PSIA
003 001 024 INITIAL CO2 PARTIAL PRESS, MMHG
003 001 025 INITIAL REL HUMIDITY, %
003 001 026 CABIN AIR HEAT LOAD, WATTS
003 001 027 INITIAL CABIN STRUCT TEMP,DEG-F
003 001 028 ENVIRONMENTAL SINK TEMP, DEG-F
003 001 029 INTERIOR CONVECTION, BTU/HR/F
003 001 030 SHELL CONDUCTANCE, BTU/HR/F
003 001 031 EXTERNAL RADK, BTU/HR/R**4
003 001 032 THERMAL RELAXATION COEFFICIENT
003 001 033 THERMAL MAX LOOP COUNT
003 001 034 STRUCTURE MASS, LBM
003 001 035 EXTERIOR CONVECTION, BTU/HR/F
003 001 036 FINAL CABIN TEMP, DEG F
003 001 037 FINAL TOTAL PRESS, PSIA
003 001 038 FINAL O2 PARTIAL PRESS, PSIA
003 001 039 FINAL CO2 PARTIAL PRESS, PSIA
003 001 040 FINAL H2O PARTIAL PRESS, PSIA
003 001 041 MAX TOTAL PRESS, PSIA
003 001 042 MIN TOTAL PRESS, PSIA
003 001 043 NOM TOTAL PRESS, PSIA
003 001 044 MAX O2 PARTIAL PRESS, PSIA
003 001 045 MIN O2 PARTIAL PRESS, PSIA
003 001 046 NOM O2 PARTIAL PRESS, PSIA
003 001 047 MAX CO2 PARTIAL PRESS, MM HG
003 001 048 MIN CO2 PARTIAL PRESS, MM HG
003 001 049 NOM CO2 PARTIAL PRESS, MM HG
003 001 050 MAX REL HUMIDITY, %
003 001 051 MIN REL HUMIDITY, %
003 001 052 NOM REL HUMIDITY, %
003 001 053 MAX DEW POINT, DEG F
003 001 054 MIN DEW POINT, DEG F
003 001 055 NOM DEW POINT, DEG F
003 001 056 MAX TEMPERATURE, F
003 001 057 MIN TEMPERATURE, F
003 001 058 NOM TEMPERATURE, F
001 001 059 MOD DATE
002 001 060 SECURITY
$$EX ! Security ID

Figure 5. Example “DDF” file (CABIN data base).

24

This header record is followed by a data line for each of the items in the record. The format is as
shown in the figure and contains the following:

1. Item type (1 = integer, 2 = alpha, 3 = real, 4 = bit flag, 5 = list)

2. Field size in words (Item types 1, 3, 4 and 5 are 1 word fields; item type 2 field size is the
number of characters/4 rounded up to nearest whole word)

3. Starting word position in the record

4. Description of the item (32 characters max).

The bit flag items are supported by TDMS for purposes not required by CASE/A and, therefore,
are beyond the scope of this manual. The DDF ends with a four character “security” ID that currently is
designed to prevent inadvertent modification of protected records as opposed to protection against mali-
cious modification. At present the security feature of the code has been disabled.

The third file used by the data management system is the “COMPONENTNAME.STT” file that
contains the status records for the active set. The data bases are not automatically compressed when a
record is deleted. The deleted record location is flagged as available for entering new data. Any new data
will be entered over the old record and that record will be flagged as a part of the active set. These flags
are in the .STT file, which is stored in binary form.

3.5 Data Management System Library Routines

The data management system library routines consist of a large number of routines that work
together in order to maintain component, connection, and schematic data bases. The routines are
grouped into file input/output, screen editing, and specialized data management routines.

3.5.1 File Input/Output Routines

The following routines provide functions to store/load data from disk to/from random access
memory (RAM). The function of each routine is listed below along with the major arrays and variables
that are updated inside the routine.

Subroutine CLOADCASE(NAME)

This routine reads the case data from the case definition file “CASENAME.MOD” and loads the
corresponding data storage arrays for each data segment.

Functions and subroutines referenced:

CTOLOWERC CTOUPPERC DUPLICATE EQOPEN
FRAME1 RANDIN TEK_ADV

Subroutine CMPOPEN

This routine writes a connection map of the pseudo-compute sequence of the current case into a
file named “CASENAME.CMP” after the solve command has been issued.

Functions and subroutines referenced:

CTOLOWERC SMVBITS

25

Subroutine EQLOAD

This routine loads component data into the “CON” array from appropriate data base records.

Functions and subroutines referenced:

DUPLICATE EQOPEN RANDIN RANDOU
TEK_ADV

Subroutine EQOPEN (ITYPE)

This routine opens the active data base file for equipment type ITYPE for interactive editing or
listing to the terminal screen. Control, labels, plot, and usercon data bases have ITYPES of 0, -1,
-2, and -3, respectively. Component ITYPES are listed in chapter 9.0.

Functions and subroutines referenced:

CDCODE CTOLOWERC FULL RANDIN
TEK_ADV

Subroutine ITMOUT(ITEM,IA,IOUT)

This subroutine determines the character format and writes specific items to the unit specified.

Functions and subroutines referenced:

CDCODE FORMAT KBIT SETPRIM
TEK_ADV TYCON

Subroutine LISOPEN

This subroutine opens the case “.LPP” file.

Functions and subroutines referenced:

CTOLOWERC

Subroutine PTMOD

This subroutine loads the 12th column of the IEL array with assignment data if the component is
in a subsystem that is assigned to a cabin.

Functions and subroutines referenced:

SMVBITS

Subroutine RANDIN(ILOCK,IUNIT,IREC,IA,NWD)

This routine is used to retrieve data from the CASE/A data bases. It reads the record number
IREC from the file having logical file unit number IUNIT into the array IA with a record length
of NWD. If an error occurs the IA array is set equal to zero.

Functions and subroutines referenced:

BLANK TEK_ADV

26

Subroutine SAVE

This command routine saves the current case configuration data in the case definition file
“CASENAME.MOD”.

Functions and subroutines referenced:

CTOLOWERC PTMOD TEK_ADV

3.5.2 Screen Editing Routines

The following routines can be invoked by the user to modify an existing component data base or
to edit any other file on the current disk storage device.

Subroutine CEDIT(IEDIT)

This command routine allows the user to modify or list the parameters for a desired component.
The type of component to be edited is specified in the command argument list along with the
optional component name. The data file COMPONENTYPE.DAT is opened and searched for the
desired component. Once found, the component parameters are displayed on the screen and the
user designates changes to be made. The contents are then updated, displayed to the screen again,
and the data are saved to disk.

The value of IEDIT determines what kind of editing is done. Values of 0, 1, 2, or 3 give the
possibility of a normal edit from command prompts, normal edit via cursor pick of component,
global edit (FASTED) via cursor pick, or display of data base values with no edit, respectively.

Functions and subroutines referenced:

CDCODE CILLCHAR CTOUPPERC DIST
DUPLICATE EQOPEN FRAME1 GRCUSR
ISTAT ITMOUT RANDIN RANDOU
SAVE SCREDT TEK_ADV TYCON

Subroutine SCREDT(IEDIT)

SCREDT is called by EDIT if the terminal is a VT100 type text terminal. IEDIT determines the
kind of editing to be performed as above.

Functions and subroutines referenced:

CDCODE CILLCHAR CLS CTOLOWERC
CTOUPPERC DIST DUPLICATE EQOPEN
GRCUSR GRSCREEN ISTAT LIST_EDITOR
RANDIN RANDOU RESTOR SAVE
SCREEN_MANAGER SETPRIM
SUB_EDITOR TEK_ADV

3.5.3 Specialized Data Management Routines

The specialized data management routines are those that are used by the other routines in order to
manipulate data into distinct formats. Some of the specialized routines correspond to the MDAC TDMS
and others are VAX specific routines. A function of each routine in this section is listed along with any
of the major arrays and variables that are affected inside the routine.

27

Subroutine CDCODE (CLINEJ, LOC, ITYP, IWORD, IDATA, IERR)

This routine is equivalent to DCODE but used with CHARACTER array of arbitrary length,
CLINEJ. This routine is used to decode the alphanumeric text typed at the CASE/A prompt. It
decodes the alphanumeric argument array ICOM into various fields delimited by the semicolon
“;” or blank character. The argument LOC specifies the field number, ITYP specifies the data
type to be returned, and IWORD specifies the length of the field in words. There are four possi-
ble values for ITYP; a value of 1 specifies an integer, a value of 2 specifies an alphanumeric, a
value of 3 specifies a real number, and a value of 4 specifies the binary representation of the
field. The decoded field value is returned in the argument IDATA. The argument IERR returns a
value of 0 if an error occurred during the decode, otherwise a nonzero value is returned.

Functions and subroutines referenced:

CFIELD CREADAL CREADFL CREADIN
INDEX TEK_ADV

Subroutine CFIELD (CLINEJ, LOC, ICOLL, ICOLH, IERR)

This is equivalent to FIELD but with CHARACTER array of arbitrary length, CLINEJ. This is
an auxiliary routine to CDCODE. It finds the field number LOC delimited by semicolons or
blanks in the argument array ICOM. ICOLL and ICOLH are used to keep track of the current
position within the array ICOM. The argument IERR returns the error code 0 if no character in
field number LOC is found or 1 if the operation is successful.

Functions and subroutines referenced:

TEK_ADV

Subroutine CLDRAI (NDATE, NYR, NMO, NDA)

This routine breaks the variable NDATE, which consists of a concatenated value for the date,
into the corresponding year (NYR), month (NMO), and day (NDA).

Functions and subroutines referenced: NONE

Subroutine CLDRIA (NYR, NMO, NDA, NDATE)

This routine takes the integer values for the current year (NYR), month (NMO), and day (NDA)
and returns the concatenated value (NDATE).

Functions and subroutines referenced: NONE

Subroutine CREADAL (CLINEJ, ICOLL, ICOLR, IDATA, IERR)

This routine returns the CHARACTER value in CLINEJ located between columns ICOLL (left)
and ICOLR (right) in the IDATA variable.

Functions and subroutines referenced: NONE

Subroutine CREADALC (CLINEJ, ICOLL, ICOLR, IWORD, CDATA, IERR)

This routine returns the CHARACTER value in CLINEJ located between columns ICOLL (left)
and ICOLR (right) in the CDATA variable.

28

Functions and subroutines referenced: NONE

Subroutine CREADFL (CLINEJ, ICOLL, ICOLR, DATA, IERR)

This routine returns the REAL value in CLINEJ located between columns ICOLL (left) and
ICOLR (right) in the DATA variable.

Functions and subroutines referenced: NONE

Subroutine CREADIN (CLINEJ, ICOLL, ICOLR, IDATA, IERR)

This routine returns the INTEGER value in CLINEJ located between columns ICOLL (left) and
ICOLR (right) in the IDATA variable.

Functions and subroutines referenced: NONE

Subroutine DELREC (IRECL, IRECH)

This routine deactivates the records IRECL through IRECH from the data base.

Functions and subroutines referenced:

DEL LBIT OPENDB_X RANDIN
RANDOU SETPRIM TEK_ADV

Subroutine FIELD (ICOM, LOC, ICOLL, ICOLH, IERR)

This is an auxiliary routine to DCODE. It finds the field number LOC delimited by semicolons
or blanks in the argument array ICOM. ICOLL and ICOLH are used to keep track of the current
position within the array ICOM. The argument IERR returns the error code 0 if no character in
field number LOC is found or 1 if the operation is successful.

Functions and subroutines referenced:

RBYTE

Subroutine FILREC (IA, IDATA)

This routine fills the array IA with the alphanumeric data located inside the variable IDATA.

Functions and subroutines referenced:

SBYTE SMVBITS

Subroutine FINDRM (IREC)

This routine returns the first open record IREC in the data base parameter file.

Functions and subroutines referenced:

RANDIN SETPRIM

29

Subroutine ITEMIO (ITEM, IA)

This routine outputs the individual value in location ITEM of array IA. It is used for displaying
the data base parameters for various components or control files when the editing routine is
invoked by the user.

Functions and subroutines referenced:

FORMAT SETPRIM TYCON

Subroutine KAM2AS (NCHAR, KA4, KADE)

This routine converts the first NCHAR characters of the alphanumeric array KA4 into ADE
(ASCII Decimal Equivalent) format in the array KADE.

Functions and subroutines referenced:

SMVBITS

Subroutine KAS2AM (NCHAR, KADE, KA4)

This routine converts the first NCHAR characters of array KADE originally in ADE format into
alphanumeric format inside the array KA4.

Functions and subroutines referenced:

SMVBITS

Subroutine LBIT (NS, NL, IW, IV)

This is a bit manipulation routine that copies the leftmost NL bits from argument variable IV into
the target variable IW starting at the NS bit location of IW.

Functions and subroutines referenced:

SMVBITS

Subroutine MVBITS (ISORC, ISTRT1, ILEN, IDEST, ISTRT2)

An intrinsic VAX subroutine that moves data bits from one location to another. The arguments
are specified as follows.

ISORC – An integer variable or array element that contains the bits to be transferred.

ISTRT1 – An integer expression that identifies the position of the first bit within ISORC to be
transferred.

ILEN – An integer expression that specifies the number of bits to be transferred.

IDEST – An integer variable or array element that identifies the location to where the bits are
to be transferred.

ISTRT2 – An integer expression that identifies the starting position within IDEST for the bits.

30

The low-order bit in either integer is zero (0). The last bit position in either integer must not
exceed 31. (The length of an integer must not exceed 32 bits.)

Subroutine RBYTE (IBYTE, IVAL, IARY)

This routine sets the value of IVAL equal to the value contained in the element IBYTE of array
IARY.

Functions and subroutines referenced: NONE

Subroutine READAL (ICOM, ICOLL, ICOLH, IWORDS, IDATA, IERR)

This is an auxiliary routine to DCODE that returns an alphanumeric value IDATA from the array
ICOM based on the variables ICOLL, ICOLH, and IWORDS, which specify the location and
size of the data string. An error code of 0 is returned in IERR if the operation is not successful.

Functions and subroutines referenced:

RBYTE SBYTE TEK_ADV

Subroutine RESTOR (IRECL,IRECH)

This routine reactivates the previously deleted records from IRECL to IRECH into the current
data base. To reactivate a single record, let IRECL = IRECH.

Functions and subroutines referenced:

LBIT RANDIN RANDOU SETPRIM

Subroutine SBYTE (IBYTE, IVAL, IARY)

This routine sets the value of element IBYTE in the array IARY equal to the value of IVAL.

Functions and subroutines referenced:

LBIT

Subroutine SMVBITS (IVAL1, ISTART, ILEN, IVAL2 ITO)

This routine was designed to duplicate the VAX-specific subroutine that moves data bits from
one location to another. The arguments are specified as follows.

IVAL1 – An integer variable or array element that contains the bits to be transferred.

ISTART – An integer expression that identifies the position of the first bit within IVAL1 to be
transferred.

ILEN – An integer expression that specifies the number of bits to be transferred.

IVAL2 – An integer variable or array element that identifies the location to that the bits are to
be transferred.

ITO – An integer expression that identifies the starting position within ISTART for the bits.

31

The low-order bit in either integer is zero (0). The last bit position in either integer must not
exceed 31. (The length of an integer must not exceed 32 bits.)

Subroutine SYSCLK (NDATE, NTIME)

This routine returns the date in YMD (year, month, day) format in the variable NDATE. The pre-
sent time in HMS (hour, minute, second) format is returned in the variable NTIME.

Functions and subroutines referenced:

IDATE TIME

Subroutine TYCON (IA, BI)

This routine converts the integer variable IA into a real number and the results are returned in the
argument BI.

Functions and subroutines referenced: NONE

32

SECTION 4. SIMULATION CONTROL AND EXECUTION

The CASE/A solution system consists of several routines that work as a group to accomplish the
simulation of an ECLS configuration. The functional grouping of the routines is as follows: (1) the exe-
cution control logic, (2) individual component routines, (3) component interface routines, and (4)
specialized routines.

To obtain a system simulation, the system components and interconnects are first defined by the
use of the graphical interface. After the system has been defined, the CASE/A solution system is
invoked by the SOLVE command. The solution system performs a quasi-steady-state iterative solution
at each time interval according to the control parameters specified in the CONTROL data file for the
selected case.

The solution algorithm operates on an iterative component level basis to achieve convergence of
the mass flows, temperatures, and pressures of each component stream to within the relaxation criteria
specified in the CONTROL data. The user may disable the temperature or pressure convergence checks
in the SOLVE command argument list if they are not of interest in the simulation. When the conver-
gence checks are disabled, the properties are calculated for the component streams based on standard
temperature and pressure. The mass flows are always checked for convergence within the component
routines.

4.1 Execution Control Logic Description

When the SOLVE command is entered by the user, the main program command processor calls
the routine named SOLVE. The SOLVE routine is then in control of program execution until the system
simulation is complete or a fatal error condition is generated. The SOLVE routine manages the library of
component routines that are called sequentially as the solution progresses in a specified “PCS.” The
SOLVE routine is arranged in distinct logic segments to accomplish the simulation. A flow chart for the
solve routine is shown in figure 6.

4.1.1 Simulation Logic Segment Structure

The SOLVE routine first calls the routine SORTIEQ, that performs a sort on the list of compo-
nents and connections data to order the components in descending priority. The assignment of subsystem
components to cabins is then performed by calling the routine PTMOD. This feature allows heat transfer
exchange to occur between the cabin environment and each component located in a subsystem schematic
assigned to it. The PTMOD routine sets up pointers to various arrays that track the heat transfer between
components and their assigned cabin environment. If a subsystem has not been assigned to a cabin, the
thermal environment for that subsystem is set to 75 ˚F. Next, the CONTROL data base file is opened
and the control parameters are read into memory. The control parameters include the simulation initial
time, termination time, time step, output time interval, relaxation criteria, maximum number of solution
iterations per time step, number of constituents to track, and the system damping factor. The values for
these parameters are loaded from the data base file into the system variables described in table 1. The
property and constituent arrays, summary arrays (routine SUMINIT), and hydraulic stream codes
(routine PINIT) are then initialized. The component performance data initialization is then performed by
the routine EQLOAD called for each component by SOLVE. The routine PSEUDO sets up the PCS and
is called by the SOLVE routine just after the component data initialization has been performed. Any
specialized initialization calculations required for the component solutions are then performed by the
individual component routines at the direction of the SOLVE routine via the solution common block
variable MFLAG. The value of MFLAG directs each component routine to perform one of four discrete
functions listed below and described in chapter 9.

33

SOLVESOLVE

OPEN DATABASE

FOR UTILIZATION

OPEN DATABASE

FOR UTILIZATION

LOAD EQUIPMENT
DATA INTO "CON"

ARRAY

LOAD EQUIPMENT
DATA INTO "CON"

ARRAY

SET "PSEUDO"

COMPUTE SEQ.
FOR COMPONENT

SET "PSEUDO"

COMPUTE SEQ.
FOR COMPONENT

INITIALIZE "HYDRA"
& MAKE FLOW

CONDUCTORS AND
PRESS. NODE MAP.

INITIALIZE "HYDRA"
& MAKE FLOW

CONDUCTORS AND
PRESS. NODE MAP.

INITIALIZE C, PRO, &

CON ARRAYS

INITIALIZE C, PRO,

CON ARRAYS

INITIALIZE
VARIABLES TO BE

OUTPUT AT POST
SIM.

INITIALIZE
VARIABLES TO BE

OUTPUT AT POST
SIM.

EXECUTE USER

OPS-0 LOGIC PRIOR
TO SIM.

EXECUTE USER

OPS-0 LOGIC PRIOR
TO SIM.

EXECUTE 100

BLOCK OF
COMPONENT

ROUTINES

EXECUTE 100

BLOCK OF
COMPONENT

ROUTINES

EXECUTE USER

"OPS-1" LOGIC

PRIOR TO 1ST TIME

EXECUTE USER

"OPS-1" LOGIC

PRIOR TO 1ST TIME

INCREMENT

TIME

INCREMENT

TIME

EXECUTE USER
"OPS-2" LOGIC

EXECUTE USER
"OPS-2" LOGIC

COMPUTE SYSTEM

PRESSURES AT
ALL NODE POINTS

COMPUTE SYSTEM

PRESSURES AT
ALL NODE POINTS

EXECUTE USER
"OPS-3" LOGIC

EXECUTE USER
"OPS-3" LOGIC

EXECUTE 200

BLOCK OF
COMPONENT

ROUTINES

EXECUTE 200

BLOCK OF
COMPONENT

ROUTINES

SOLUTION

CONVERGED?

SOLUTION

CONVERGED?

EXECUTE 300

BLOCK OF
COMPONENT

EXECUTE 300

BLOCK OF
COMPONENT

EXECUTE USER
"OPS-4" LOGIC

EXECUTE USER
"OPS-4" LOGIC

TIME = OUTPUTTIME = OUTPUT

EXECUTE USER

"OPS-5" LOGIC

EXECUTE USER

"OPS-5" LOGIC

TIME<END?TIME<END?

EXECUTE USER
"OPS-6" LOGIC

EXECUTE USER
"OPS-6" LOGIC

UPDATE

DATABASE

UPDATE

DATABASE

LISOPEN,
EQOPEN

EQLOAD

PSEUDO

PINIT

OPS0

EQSOLVE

OPS1

OPS3

EQSOLVE

OPS4

OPS2

OPS5

OPS6

Y

N

SUMINIT

SYSBAL

EXECUTE 400

BLOCK OF
COMPONENT

ROUTINES

EXECUTE 400

BLOCK OF
COMPONENT

ROUTINES

WRITE
SUMMARIES

WRITE
SUMMARIES

WRITCON,

SUMMARY,
PWVSUM

RETURN TO MAINRETURN TO MAIN

EQSOLVE

EQSOLVE

Y

N

N

Y

Figure 6. SOLVE routine flow chart.

34

Table 1. Simulation control variables.

NAME DESCRIPTION

TIME The current simulation time in hours.

STRT The simulation starting time in hours (defaults to 0.0).

END The simulation termination time in hours (defaults to 24.0).

STEP The simulation time step interval in hours (defaults to 1.0).

RELX The relaxation criteria to be met on a percent change basis from the previous iteration
value. All component streams must meet this criteria for their mass flows, temperatures,
and pressures.

IEQ The current relative equipment number in the PCS. This variable is updated in the
SOLVE routine.

LPCS A variable that is used to step through the connection map data according to the PCS.

MFLAG Indicates the simulation code segment to execute in the component routines.

RXCC Tracks the maximum percent change of all component streams up to the current point in
the PCS. This value must be below RELX for advancement to the next time step after
a complete system iteration.

IPTFLG Indicates whether the user wishes the system to perform relaxation checks on tempera-
tures and/or pressures. The default value indicates checks are to be made for both in
addition to the mass flow checks that are always made.

NEQ The number of components in the case to be simulated.

NCON The number of fluid streams in the case to be simulated.

NCOMP The number of component types currently supported (54).

NTRACK The number of constituents to be tracked (up to 50).

NSYSLOOP The current number of system iterations performed during the present time step.

SYSDAMP A damping factor used by a few specialized hydraulic routines.

MFLAG = 1 Component data initialization

MFLAG = 2 Iterative component level solution

MFLAG = 3 Post time step wrap-up

MFLAG = 4 Post simulation wrap-up

MFLAG = 5 Error occurred, wrap-up and return.

35

The iterative solution process begins after the component data initialization at the simulation start
time and is continued until the termination time is reached. At each time interval, the SOLVE routine
invokes the component routines sequentially according to the PCS until all of the components in the sys-
tem have been processed. The routine EQSOLVE is responsible for calling the correct component rou-
tine based on the type of the component being solved for. After each complete system iteration, the con-
vergence flag indicators are checked for compliance with the desired relaxation criteria. The iteration
process is repeated until convergence is obtained for each and every component or until the maximum
number of iterations is reached. The post time step wrap-up is performed after the iteration process is
completed. The time is then incremented and the whole process is repeated until the simulation termina-
tion time is reached or a termination error condition occurs on the component level (indicated when a
component routine sets MFLAG to 5). The progress of the simulation is indicated on the display termi-
nal at the completion of each time step. A detailed report of the stream compositions and conditions for
each component is written into a file CASENAME.LPP at each output time interval by the routine
SSOUT. The simulation wrap-up is performed when the termination time has been reached. The final
operations are performed by the routines SUMMARY and PWVSUM, that provide summaries of mass
balance calculations and power usage, as well as weight and volume tabulations at the end of the LPP
file. Execution control is then returned to the main command processor.

4.1.2 Pseudo-Compute Sequence

The PCS defines the order of the invocation of the component subroutines and may be modified
by the user during the solution process. The PCS is initially set by the order in which the components are
located in the system schematic in the case construction phase. The PCS is then resequenced in the
SORTIEQ routine to order the components from highest to lowest priority. A priority code array inside
the SORTIEQ routine sets the priority of each component type based on the characteristics of its opera-
tion. Components of equal priority are kept in the same relative order as when they were located in the
system schematic. As the sorting process is executed, the component connection data are also updated to
reflect the sorting of the relative equipment list. The user may change the PCS by the invocation of the
SEQUENCE routine from the user operations blocks, which are discussed in section 4.1.3 and chapter 7.

After the relative equipment list has been sorted, the connection mapping is then performed by
the PSEUDO routine. The PSEUDO routine translates the component connection data into an ordered
map of the connections between the components based on the PCS. Pointers for the constituent array
locations are established for all component streams. These pointers are used by all component routines to
properly track the constituent mass flows of the system (see figure 7.3.2-1). A summary printout of the
PCS and connection map is written to a file named CASENAME.CMP for use in debugging if required.
An example printout is shown in figure 7.

4.1.3 User Operations Routines

The ability to incorporate user-defined logical and computational operations into the solution
flow is provided by seven entry points in the SOLVE routine. The entry points permit the user to per-
form initialization and wrap-up functions on a per-simulation basis, to perform time varying operations
on a per-time-step basis, to perform operations within the solution of each time step, and to write out
plot data. The relationship of the seven user-defined operations blocks to the overall solution flow is
illustrated in figure 6. The seven blocks are discussed in chapter 7.

36

 CONNECTION MAP FOR CASE ATC_7

 NUMBER OF COMPONENTS 4 NUMBER OF CONNECTIONS 5
 LENGTH OF PSEUDO 6

 COMPONENT LISTING

REL CENTROID CONNECTION OF EACH COMPONENT STREAM
IEQ SUBSYS ID NAME X Y 1 2 3 4 5 6 7 8
--- -------- -- -------- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
 1 ATC 27 P-1 301 426 5 1 0 0 0 0 0 0
 2 ATC 32 LOAD-1 651 206 1 4 14 0 0 0 0 0
 3 ATC 33 PAYLOAD 650 554 4 5 0 0 0 0 0 0
 4 ATC 50 C-1 607 420 0 0 0 0 0 0 0 0

 CONNECTION LISTING

 REL REL
CONN IEQ STREAM TO IEQ STREAM NAME OF COMPONENTS
---- ---- ------ ---- ------ ------------------
 1 1 2 ==> 2 1 P-1 : LOAD-1
 2 2 -2 ==> 4 2 LOAD-1 : C-1
 3 4 1 ==> 1 99 C-1 : P-1
 4 2 2 ==> 3 1 LOAD-1 : PAYLOAD
 5 3 2 ==> 1 1 PAYLOAD : P-1

 PSEUDO COMPUTE SEQUENCE

SEQUENCE CONN REL REL
 NUMBER (NCPT) IEQ STREAM TO IEQ STREAM
-------- -------- ---- ------ ---- ------
 1 5 1 1 ==> 3 2
 2 1 1 2 ==> 2 1
 3 1 2 1 ==> 1 2
 4 4 2 2 ==> 3 1
 5 4 3 1 ==> 2 2
 6 5 3 2 ==> 1 1

Figure 7. Example connection map printout.

4.2 Solution System Library Routines

CASEAMAIN

The main program serves as the command processor/user interface for the CASE/A sys-
tem. Commands and their arguments are typed after a command line prompt by the user and pro-
cessed by CASEAMAIN. Upon completion of the command control is returned to
CASEAMAIN and a new prompt issued. The variable NCODE, a two-dimensional four-byte
integer, contains a “list” of possible commands. The first four characters are referenced by the
first index of NCODE and the second four characters are referenced by the second index. Thus, a
command can be a maximum of eight characters long. Notice also that the command is text but
stored as an integer. The command and its arguments are read from the input line with a read
statement into the character variable ICOM. This character string is passed to DCODE to deter-
mine the first “word” on the command line and returned in the variable ITEXT. The NCODE list
of commands is searched for a match to ITEXT and the variable I is set equal to the relative
position of the command in this list. Control is passed to a statement label using a computed

37

GOTO on the value of I. For instance a value of I = 1 would transfer control to statement label
201, I=2 goes to 202, etc. up to I=134. Upon completion, control is returned to statement label 20
where a new prompt is issued. This process is repeated until the user issues the “EXIT” com-
mand or presses CONTROL-Y. Notice also that commands are recognized only if they are type
exactly as stored in the NCODE array. They are, however, translated from lower to upper case
using the TOUPPER routine.

Functions and subroutines referenced:

ALARM ASSIGN ARCHIVE AUTOPLOT
AVRAGE BCK_GD_CLR BLDREC CALC
CASEREAD CDCODE CEDIT CHANGE
CHKREC CILLCHAR CLCALC CLOADCASE
CLONE CLS CONECT
COPYALL CNEWCASE CREATE_KEYBD CTOUPPERC
CUTALL DBOPEN DCALC DCLFOR
DCODE DELCAS DELCN DELEQ
DELETE DELLAB DELNOTE DELREC
DIR DITTO DTABLE EDITOR
EDT ELIMINAT ENTRY EQOPEN
EXPORT FAST FDUMP FILE
FILEREC FIND FIT FLAG
FRAME1 FULL GRALPH GRCHRZ
GRCOPY GRERAS GRINIT GRLBCT
GRMOVE HELP IMPORT INPUT
INTERSEC JOIN KBIT LABL LBIT
LIB$SYS_TRNLOG LIST LISTAB LOAD
LOCATE MASKER MERGE MERGE_IN
MERGE_OUT MODBAK MOVALL MOVEIT
MOVLAB MOVNOTE NEWCASE NOTE
OPENDB_X PLTOVR POINT POLYSIM
PRELIM PREPORT PREPRO PRIMDB
PRNTSS RAMDISK RANDIN RANDOU
RANGE RANK RBYTE
READCOMM REDRAW RENAME RENEQ
REPORT RESTOR RETRIEVE RNSS
ROTATE SAMFST SAMPLE SAVE
SAVEAS SCREDT SECURE SELECT
SETPRIM SIGMA
SMG$CREATE_COMPOSED_LINE SMG$CREATE_KEY_TABLE
SMG$CREATE_VIRTUAL _KEYBOARD SOLVE
STATS SUBSYS SUBTTL SYSCLK
TABLE TALLY TARGET TDPLOT
TECREPORT TEK_ADV TOGGLE_SCREEN TYPE
UNASSIGN UNION UPDPLT WRITCON

Subroutine DPCS(IEQA,ISTA,IEQB,ISTB,NCPT)

Used to unload the IPCS array PCS.

Functions and subroutines referenced:

SMVBITS

38

Subroutine EQSOLVE

EQSOLVE calls the COMPONENT routines using a computed GOTO based on the value of
ITYPE. ITYPE is determined for each component from the EQL array. This routine is called
from SOLVE inside a DO LOOP, which executes once for each component in the system.

Functions and subroutines referenced:

ADSORPTN AFSPE BMR BOSCH
CABIN CAP CFR CHX
CNHX CNTRLLR CO2LIQ CP
CREW DEFLOW DEHUM EDC EVAP
FCELL FILTER FINDC FOODPROC
H2OSEP HATCH HEATER HX
HYDISS IONEXCH LIOH MODULE
MOLSIEV MSPLT NODE O2N2 OPS7
PIPE PLANT POINTCON PREWAST
PUMP RACK RAD RO
SABAT SAWD SFWE SINK
SOURCE SUM TANK TBUS
TIMESC TIMER VALVE VCD
WASH WQM

Subroutine PSEUDO

The primary interface routine between the graphic and solution system.

Functions and subroutines referenced:

CMPOPEN POINTCON SORTIEQ SMVBITS
TEK_ADV

Subroutine SEQUENCE(NAME)

This routine can be invoked by the user in OPS logic to resequence the solution order.

Functions and subroutines referenced:

TEK_ADV

Subroutine SOLVE

The primary driver for the solution system.

Functions and subroutines referenced:

CASEREAD CASEWRIT CNTRLLR DUPLICATE
EADSAVE EQLOAD EQOPEN EQSOLVE
FINDC FOR$CLOSE FRAME1 GRERAS
HEADER LISOPEN OPS0 OPS1 OPS2
OPS3 OPS4 OPS5 OPS6 PINIT
PLTDATA PLTFILE PIONTCON PSEUDO
PWVSUM RANDIN RANDOU SORTIEQ
SSOUT SUMINIT SUMMARY SYSBAL
TEK_ADV TIMER WRITCON

39

Subroutine SORTIEQ

Used to sort the PCS to put the active components first.

Functions and subroutines referenced:

PTMOD SAVE

40

SECTION 5. MODEL OUTPUT MANAGEMENT

The following sections discuss the routines involved in the forms of output supported by
CASE/A.

5.1 Schematic Output

There are several routines available to the user regarding schematic output. These include screen
refreshing, generating hard copies of subsystem layouts, and locating stream data on the schematic. The
commands are discussed in section 5.1 of the User’s Manual and the subroutines that support them are
detailed in section 2 of this manual.

5.2 Component Data Base Output

It is sometimes useful to obtain a hard copy of the data base contents for components. CASE/A
provides the PRINTSS command, which prints a copy of the data base contents for each component of a
specified subsystem. The routine to support this function is discussed below.

Subroutine PRNTSS

This routine is used to print the component data for a subsystem.

Functions and subroutines referenced:

CDCODE CILLCHAR CTOUPPERC EQOPEN ITMOUT
RANDIN TEK_ADV

5.3 Simulation Summary

The solution routine (SOLVE) generates the system summary file CASENAME.LPP. This file is
generated by calling HEADER and SSOUT at each output interval. The routines WRITCON,
SUMMARY, and PWVSUM are called after the simulation has ended. Each of these routines is dis-
cussed below. See chapter 5.3 of the User’s Manual for an example .LPP file.

Subroutine HEADER

This routine writes the “.LPP” file header. This is done at each output interval. This section con-
sists of the values of TIME, STEP, RELXX, RELCC, LOOPS. and the subsystem name in the
form:

...

......................... SUBSYSTEM: NAME ..

..

Functions and subroutines referenced: NONE

Subroutine PWVSUM

This routine develops the power and weight summaries during simulation wrap-up. This sum-
mary is at the end of the .LPP file and begins with

41

POWER-WEIGHT-VOLUME SUMMARY

It follows with total P, W, V for each subsystem and the total for the case.

Functions and subroutines referenced:

 SMVBITS

Subroutine SSOUT(NA)

SSOUT is used to output the individual component data to the .LPP file. NA is the subsystem
name. This section of the LPP file comes directly after the header and prints the case name, com-
ponent name, type, IEQ number, and subsystem name, along with the values from the C and
PRO array for each of the component streams. This section begins with a row of equal signs for
each component.

Functions and subroutines referenced:

SMVBITS PROPS

Subroutine SUMMARY

Performs the summary logic for a simulation wrap-up and print out. This routine prints summary
data for components that accumulate mass, for example tanks and cabins. The list of data to be
summarized is contained in the variable descriptions located in appendix A of this manual. This
section comes prior to the PWV summary at the end of the simulation. It is easily found in the
file as it is delimited with a row of #’s.

Functions and subroutines referenced:

SMVBITS

Subroutine WRITCON

This routine updates the CON array with output and benchmark values for each component. It
then writes the values to the .LPP file. This appears below the last SSOUT entry and before the
first SUMMARY entry. This section is delimited with a row of +’s.

Functions and subroutines referenced.

EQOPEN ISTAT RANDIN RANDOU TEK_ADV

5.4 Integrated Plot Utility

The integrated plot utility (IPU) provides the capability to save specified data for analysis and
plotting. Details for creating “PLOTSETS” and using IPU commands are given in section 5.4 of the
User’s Manual. To create the data for the IPU, the SOLVE routine calls two subroutines. It calls
PLTFILE before loading the component data and just after loading the PLOT data base into an array
(IA). After each OPS call, SOLVE calls PLTDATA if the plotset is active for that OPS logic block (see
section 4.3 of the User’s Manual). PLTDATA writes out, in binary form, the data requested by the user
in the PLOTSET. To use the IPU to generate plots on the screen or printer copies of the plots, the IPU

42

command is given at the CASE/A prompt. This action sets the logical variable TDMS_FLAG to true.
When TDMS_FLAG is true, the IPU commands discussed in section 5.4 of the User’s Manual become
active. This also causes other commands, such as “SOLVE” to be disabled. These IPU commands are
documented in appendix B.2 of the User’s Manual. Following is a brief description of PLTFILE and
PLTDATA. Variables used by the IPU are tabulated in appendix A of this manual.

Subroutine PLTDATA(NUM,PLD_ERR)

This routine executes a loop from 1 to KOUNT(NUM) (Number of items in the PLOTSET) and
loads the DATA array with the data specified in the variable IPLT. When the data are extracted,
the record is written to the .DAT file.

Functions and subroutines referenced:

FINDC GETPP OPENDB_X RANDOU RESTOR
SETPRIM

Subroutine PLTFILE(IA,PLF_ERR)

This routine initializes the PLOTSET arrays, pointers, and creates the .DAT, .STT, .SCR and
.DDF files. PLF_ERR is set to 1 if an error occurs.

Functions and subroutines referenced:

CDCODE CTOLOWERC GETI OPENDB_X RANDIN
SETPRIM TEK_ADV

5.5 Data Output Options

When using OPS logic, the need may arise to store user-defined variables for later analysis.
These variables, however, may not be accessible to the IPU through any of the system data arrays (CON,
C, PRO, etc.). In such cases, the user has two primary methods to save this data for use with TDMS:

(1) Output to the USERCON array and

(2) Custom user output (e.g. with FORTRAN write statements).

5.5.1 Output to the “USERCON” Array

The USERCON array is the preferred method of making user-defined variables available to the
IPU. The USERCON array is a one-dimensional array of 100 elements. This array is declared in a
COMMON BLOCK in all of the appropriate “INCLUDE” files (see appendix) and is therefore auto-
matically available to the user in all OPS subroutines. Additionally, any other user-provided subroutine
may access this array by adding the following statement to its variable declaration code:

INCLUDE ‘CASEA$CODE:COMPCOM.INC’

Locations 1 to 60 of USERCON are available in the USERCON data base (accessed while
running CASE/A by giving the command “ED;USERCON”). Values may be entered through the
CASE/A editor and used directly in OPS logic. Similarly, output values may be stored in the USERCON
array and viewed in the data base after a simulation is complete. For real-time data storage, the desired
parameters should be stored in the USERCON array and accessed by the IPU (CODE=USER). See sec-
tion 4.3 of the User’s Manual for a description of this process. Locations 61 to 100 are accessible by the

43

IPU but are not displayed as part of the USERCON data base when viewed in the full-screen mode (due
to screen size limitations only).

As an example, suppose the temperature of the fluid stream at the outlet of a PIPE, named
“PIPENAME”, in a given model is to be tracked in Celcius rather than Fahrenheit. The conversion
should be performed in OPS4 (post time step). The code in figure 8 converts the temperature and stores
the value in location 3 of USERCON.

Subroutine OPS4
...
CALL GETT(‘PIPENAME’,2,TEMPF)
TEMPC = 5.0/9.0 * (TEMPF - 32.0)
USERCON(3) = TEMPC
...
RETURN
END

Figure 8. Variable output to the USERCON array.

The plotset definition screen (ED;PLOT) entries necessary to output this value to a file is shown
in figure 9.

PLOTSET DEFINITION

CODE COMPONENT NAME LOCATION STREAM# TITLE
---- -------------- -------- ------- ------------------------
USER 0003 0 Pipe Outlet Temp, C

Figure 9. Example PLOTSET definition for the USERCON array.

5.5.2 Custom User Output

If a particular output situation does not lend itself to the IPU, the user has two options for writing
output directly to data files. The data may be written to an ASCII text file or written in binary form so
that a data base is created that can be accessed with TDMS as described below.

5.5.2.1 Writing Data to an ASCII Text File

The simplest method of saving user-defined data is through standard FORTRAN formatted
WRITE statements. Using this method, the data could be written to the file in such a way as to be recog-
nizable to some commercial data analysis package. If no postprocessing is desired, the output could
simply be formatted for direct incorporation into a presentation or report. For the temperature conversion
example above, the process might be as simple as shown in figure 10.

44

Subroutine OPS0
...
OPEN (UNIT=60,FILE=‘MYOUTPU.DAT’,STATUS=‘NEW’)
...
RETURN
END

Subroutine OPS4
...
CALL GETT(‘PIPENAME’,2,TEMPF)
TEMPC = 5.0/9.0 * (TEMPF - 32.0)
WRITE(60,100) TEMPC

100 FORMAT (1X, ‘EXIT TEMPERATURE OF PIPENAME = ‘, F7.2, ‘ F’)
...
RETURN
END

Figure 10. Writing custom data to a text file.

5.5.2.2 Creating a Custom Data Base for Storing Output Data

There are two steps in creating a custom data base. The first step is to write the desired parame-
ters to a binary file. The second step is to create a data definition file (.DDF) that specifies how the data
are stored. The following example illustrates these procedures.

Consider a PUMP-STORE connection that is part of some larger model. The PUMP (named P1)
is pumping a fluid composed of oxygen, nitrogen, carbon dioxide, and water vapor (of unknown concen-
trations) and directing it into the STORE (named S1). For this example, the components upstream of the
pump and downstream of the storage tank are unimportant. Suppose the user wishes to determine the
flow rate and stream composition at the pump outlet, and the storage tank temperature and pressure as a
function of time. These parameters, the associated CASE/A arrays, and the locally defined user variables
are shown in figure 11.

 Parameter CASE/A Location Stream Variab le

time TIME - - TIME
flow rate C 1 2 MDOT
O2 mass frac C 2 2 FO2
N2 mass frac C 3 2 FN2
CO2 mass frac C 4 2 FCO2
H2O mass frac C 8 2 FH2O
tank temp PRO 2 1 S1T
tank press PRO 1 1 S1P

Figure 11. Example variable output using binary files.

Recall that the components are named P1 (PUMP) and S1 (STORE) and that the data are to be
saved as a function of time. Thus, the code in figure 12 would be placed in OPS4 of the users supplied
operations logic. See section 7.0 of the user’s manual for a description of the utility routines.

45

Subroutine OPS4
...
CALL GETC(‘P1 ‘,2,1,MDOT)
CALL GETC(‘P1 ‘,2,2,FO2)
CALL GETC(‘P1 ‘,2,3,FN2)
CALL GETC(‘P1 ‘,2,4,FCO2)
CALL GETC(‘P1 ‘,2,8,FH2O)
CALL GETC(‘P1 ‘,1,S1T)
CALL GETC(‘P1 ‘,1,S1P)
...
RETURN
END

Figure 12. Example code to get values for pump “P1.”

Now that the data are available in local variables, it can be written to a binary file as shown
below.

WRITE (99) TIME, MDOT, FO2, FN2, FCO2, FH2O, S1T, S1P

This WRITE statement outputs the data to a binary file named FOR099.DAT. Although the use
of logical unit number 99 is arbitrary, it is recommended that only values above 60 be used to prevent
conflict with CASE/A file access routines.

The second step of creating the data base is the development of the data definition file. Figure 13
presents the .DDF, named EXAMPLE.DDF, for the problem at hand.

010 010 009 15000 010 0 0
003 001 001 TIME, HRS
003 001 002 PUMP OUTLET FLOW RATE LB/HR
003 001 003 PUMP OUTLET O2 FRACT
003 001 004 PUMP OUTLET N2 FRACT
003 001 005 PUMP OUTLET CO2 FRACT
003 001 006 PUMP OUTLET H2O FRACT
003 001 007 TANK TEMPERATURE, F
001 001 008 TANK PRESSURE, PSIA
003 001 009 MODIFICATION DATE
002 001 010 SECURITY

Figure 13. Example data definition file for custom output.

After the simulation is completed, the data base may be activated by entering the IPU, or by
running TDMS as a standalone package. TDMS will ask the user to enter a data base name. This is the
same as the .DDF name, i.e., EXAMPLE (with no extension). Next, the data must be pulled from the
FOR099.DAT file and stored in the data base. To do this, use the SELECT command (see the on-line
help for assistance).

SELECT;99;8

The first parameter is the FORTRAN logical unit number, and the second number reflects the
number of items in the WRITE statement. Note that the .DDF may be longer than necessary (i.e., sup-
port more items than actually contained in the WRITE statement) to allow room for expansion. If the
.DDF is shorter, however, the data will wrap from record to record and the data base will be corrupted.

46

Once the SELECT command has been executed, the data base is complete. The next time the
data base is accessed, the SELECT function is not needed. If the simulation is run again, however, the
SELECT process must be repeated to load the new data into the data base.

5.6 Schematic Connection and Hydraulic Maps

The CASE/A solution routine automatically generates two output files containing schematic
connection and hydraulic flow conductor information to assist the user in debugging new or existing
cases. The .CMP and .FMP files for the case schematic shown in figure 14 will be discussed in the fol-
lowing two sections.

PUMP

Figure 14. Example subsystem schematic.

5.6.1 The .CMP File

The schematic connection map is created in the user’s default directory and named
CASENAME.CMP. An example .CMP file is shown in figure 15. The first line identifies the case name.
The next two lines list the total number of components and connections located in the case along with
the length of the PCS, which is discussed here and in section 4.1.2. The next section in the .CMP file
lists all of the components in the case by relative equipment number (IEQ) as determined in the
SORTIEQ routine (see section 4.1.2). Component listing information consists of the relative IEQ num-
ber, subsystem name, component type (ITYPE), component name, (x,y) coordinates (in pixels) of the
component icon body centroid relative to the lower left hand corner of the terminal screen, and the con-
nection numbers of the component streams (maximum of 8). Notice that the inlet connection (stream 1)
to the PUMP named P-1 has the same connection number (1) as the outlet connection (stream 2) of the
TBUS named PAYLOAD.

47

 CONNECTION MAP FOR CASE ATC_7

 NUMBER OF COMPONENTS 4 NUMBER OF CONNECTIONS 5
 LENGTH OF PSEUDO 6

 COMPONENT LISTING

REL CENTROID CONNECTION OF EACH COMPONENT STREAM
IEQ SUBSYS ID NAME X Y 1 2 3 4 5 6 7 8
--- -------- -- -------- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
 1 ATC 27 P-1 301 426 5 1 0 0 0 0 0 0
 2 ATC 32 LOAD-1 651 206 1 4 14 0 0 0 0 0
 3 ATC 33 PAYLOAD 650 554 4 5 0 0 0 0 0 0
 4 ATC 50 C-1 607 420 0 0 0 0 0 0 0 0

 CONNECTION LISTING

 REL REL
CONN IEQ STREAM TO IEQ STREAM NAME OF COMPONENTS
---- ---- ------ ---- ------ ------------------
 1 1 2 ==> 2 1 P-1 : LOAD-1
 2 2 -2 ==> 4 2 LOAD-1 : C-1
 3 4 1 ==> 1 99 C-1 : P-1
 4 2 2 ==> 3 1 LOAD-1 : PAYLOAD
 5 3 2 ==> 1 1 PAYLOAD : P-1

 PSEUDO COMPUTE SEQUENCE

SEQUENCE CONN REL REL
 NUMBER (NCPT) IEQ STREAM TO IEQ STREAM
-------- -------- ---- ------ ---- ------
 1 5 1 1 ==> 3 2
 2 1 1 2 ==> 2 1
 3 1 2 1 ==> 1 2
 4 4 2 2 ==> 3 1
 5 4 3 1 ==> 2 2
 6 5 3 2 ==> 1 1

Figure 15. Example connection map (.CMP file).

The connection listing of the .CMP file simply shows each connection located in the case. In the
first column is the absolute connection number followed by the relative IEQ numbers and stream num-
bers of the two components that are connected. The names of the components being connected are given
in the last column. Notice for the controller (CNTRLLR) that a “data” connection to a component stream
is assigned the negative of the stream number (-2 in this case) and a “data” connection to a component
body (controller to pump) results in a stream number of 99. This results in CASE/A not tracking these
“data” connections in the PCS. The last data block in the .CMP file is the PCS. The first column is the
PCS number followed by the connection number (NCPT = the number of the connection pointer) and
the component streams that are connected. The PCS is determined by the equipment sort performed by
SORTIEQ and by the number of connections made to that component. For example, a CABIN compo-
nent located in a case would receive the highest ranking in SORTIEQ. Then all of the connections made
to that CABIN would appear next in the PCS in ascending order of the relative IEQ of the connecting
component. The PCS, then, is a list, in order of their relative equipment number, of all the components
connected to streams of a component. In the example, for instance, the first component in the PCS is

48

IEQ 1. It has two entries in the PCS, sequence numbers 1 and 2. This component, a pump with priority
2, has two streams. Stream 1, the inlet, is connected to IEQ 3, the exit of the TBUS (stream 2). The exit
stream (2) of the pump is connected to the inlet stream (1) of the cold plate, whose IEQ is 2. Generally,
the PCS has a length equal to twice the number of connections. Thus, it is seen that the PCS is an
ordered list of components that shows how the streams of a component are connected to other compo-
nents. The array NPCS stores the component IEQ numbers in the order they appear in the PCS. This is
the SOLUTION ORDER and can be changed with the SEQUENCE subroutine. This array is used by
SOLVE to determine the next IEQ in the solution process. The “SEQUENCE NUMBER” of the PCS
should not be confused with the SOLUTION ORDER contained in the NPCS array. Note that controller
(CNTRLLR) and time (TIMER) components do not appear in the PCS. For a BUBBLE connection, the
connection number on the “B” side of the BUBBLE is used in the PCS and the BUBBLE is removed. In
summary, the PCS is simply an orderly listing of all connections that each component (excluding
CNTRLLR, TIMER and between BUBBLE’s) “sees” both upstream and downstream, sorted by relative
IEQ number.

5.6.2 The .FMP File

The flow conductor map is created in the user’s directory and named CASENAME.FMP. An
example .FMP file is shown in figure 16. The first line identifies the case name. The next seven lines
give the total number of components, pressure nodes, flow conductors, flow subnetworks, controllers,
timers, and bubbles located in that particular case. Pressure nodes correspond to the fluid stream hit
boxes of each component in the case. CNTRLLR and TIMER hit boxes, of course, are not included in
the hydraulic solution since they represent the flow of data. A BUBBLE component simply represents a
flow connection across subsystem screen boundaries and, thus, is not included as a pressure node. The
pressure node information given in the .FMP file includes the system node number, component number,
component relative equipment number (IEQ), subsystem name, component type (both ITYPE and the
alphanumeric name), component name, component stream number, and connection number (NCPT)
attached to that stream. The flow conductor information list contains the system conductor number, the
two system nodes attached to that conductor, and the component names and stream numbers that corre-
spond to those two nodes. The entire hydraulic layout of the case (nodes and connectors) are subdivided
into separate subnetworks that are terminated by boundary pressure nodes as described in section 8.1.1
of this manual and also in section 8.2.1 of the User’s Manual. The flow subnetwork information in the
.FMP file is broken into separate sections for each subnetwork. In this example, there is only one net-
work. The first line contains the subnetwork number and the number of nodes and conductors that it
contains. A mapping is then provided that shows how the network specific node and conductor numbers
correspond to the actual system node and conductor numbers. It is highly advisable to have the case
schematic(s) close at hand when following the information provided in the .FMP file. The user is
encouraged to mark the node and conductor numbers on the schematic(s) to help visualize the hydraulic
subnetworks that CASE/A is attempting to solve. The .FMP file is an extremely valuable debugging tool
to aid in solving pressure convergence problems.

49

 FLOW MAP FOR CASE ATC_7

 NUMBER OF EQUIPMENT ITEMS: 4
 NUMBER OF PRESSURE NODES: 6
 NUMBER OF FLOW CONDUCTORS: 5
 NUMBER OF FLOW SUBNETWORKS: 1
 NUMBER OF CNTRLLR COMPONENTS: 1
 NUMBER OF TIMER COMPONENTS: 0
 NUMBER OF BUBBLE COMPONENTS: 0

 *** NOTE: CNTRLLRs, TIMERs, AND BUBBLEs DO NOT ***
 *** APPEAR IN THE NODE INFORMATION LIST BELOW ***

 PRESSURE NODE INFORMATION

SYSTEM REL CONN
 NODE IEQ SUBSYS COMPONENT TYPE NAME STREAM (NCPT)
------ --- -------- -------------- -------- ------ ------
 1 1 ATC 27 PUMP P-1 1 5
 2 1 ATC 27 PUMP P-1 2 1
 3 2 ATC 32 CP LOAD-1 1 1
 4 2 ATC 32 CP LOAD-1 2 4
 5 3 ATC 33 TBUS PAYLOAD 1 4
 6 3 ATC 33 TBUS PAYLOAD 2 5

 FLOW CONDUCTOR INFORMATION

 SYSTEM SYSTEM SYSTEM
CONDUCTOR NODE A TO NODE B COMPONENT A STREAM TO COMPONENT B STREAM
--------- ------ ------ ----------- ------ ----------- ------
 1 1 ==> 6 P-1 1 ==> PAYLOAD 2
 2 2 ==> 3 P-1 2 ==> LOAD-1 1
 3 3 ==> 4 LOAD-1 1 ==> LOAD-1 2
 4 4 ==> 5 LOAD-1 2 ==> PAYLOAD 1
 5 5 ==> 6 PAYLOAD 1 ==> PAYLOAD 2

 FLOW SUBNETWORK INFORMATION

===

NETWORK NUMBER 1 CONTAINS 6 NODES AND 5 CONDUCTORS

 NETWORK CORRESPONDS SYSTEM
NODE NUMBER TO NODE NUMBER
 ----------- ----------- -----------
 1 ==> 1
 2 ==> 6
 3 ==> 5
 4 ==> 4
 5 ==> 3
 6 ==> 2

 NETWORK CORRESPONDS SYSTEM
 CONDUCTOR TO CONDUCTOR
 ----------- ----------- -----------
 1 ==> 1
 2 ==> 5
 3 ==> 4
 4 ==> 3
 5 ==> 2

Figure 16. Example hydraulic flow map (.FMP file).

51

SECTION 6. UTILITY COMMANDS AND MISCELLANEOUS SYSTEM ROUTINES

This section describes the commands available within the CASE/A environment that are
designed to make system use more efficient, and those utility routines that are used by other subroutines.
These commands are not always required for normal simulation execution, but perform useful functions
such as providing an interface to VMS or examining various data.

6.1 Terminal Settings

The CASE/A modeling package is designed to operate on terminals capable of emulating
Tektronix 4014 graphics terminals and/or DEC VT100 text terminals. The preferred configuration
would be an advanced graphics terminal capable of emulating both (such as the composite terminal).
The default terminal type is a GraphOn composite terminal. The terminal type may be changed by the
user to match a particular system. The user may examine the status of a variety of terminal-related
settings using the FLAGS command. Complete descriptions of these commands are provided below.

6.1.1 Terminal Setting Command

The TERM command defines the type of terminal used in a given CASE/A work session to
permit the proper interpretation of editing and output commands. The following is a summary of the
terminal types currently supported.

TERM 1 – Tektronix 4014
TERM 2 – VT100
TERM 3 – DUAL VT100/4014

When the TERM command is issued, the main program decodes the command line and sets the
terminal characteristics according to the argument as listed above at statement label 246. The variable
ITMNL, which is used by other routines as well, is set equal to the argument of the command (e.g.,
TERM;2 gives a value of 2 to ITMNL). The screen is initialized and cleared based on the value of
ITMNL. There is no “TERM” subroutine such as is the usual case for most commands. The following
routines are called, however, by CASEA_MAIN to set the terminal type:

CLS CDCODE LBIT FRAME1
TEK_ADV TOGGLE_SCREEN

6.2 Miscellaneous Commands

The following describes some useful miscellaneous commands.

6.2.1 Flags

This command invokes the subroutine FLAG to display a list of 15 system flags. The list
displays the status of the flag—either ON or OFF. The following flags are displayed:

LOGO, INVERSE FLAG, COMMAND ECHO,
AUTO HARD COPY, PLOT TIME, DUAL Y AXES,
VECTOR GRAPHICS, X AXIS LOG SCALE, Y AXIS LOG SCALE
OVER-WRITE PROTECT BOLD PLOT PAUSE FOR COPY
NASA LOGO COLOR FLAG
TASK COMPLETION ESTIMATE PLOT LEGEND

52

These flags are discussed in the User’s Manual in appendix B.1 and B.2.

Subroutine FLAG

The FLAG subroutine displays a list of system flags.

Functions and subroutines referenced: NONE

6.2.2 On-Line Help Information

The help routine is called by CASEA_MAIN and gives an explanation of all CASE/A commands
including IPU unique commands. Included under each HELP topic is an explanation of the command’s
FUNCTION, the command syntax (FORMAT), and any helpful notes. Help is invoked by the command

CASEA> HELP;topic

If the topic is left blank, HELP will provide a list of available topics.

HELP opens an ASCII text file with the name TOPIC.HLP. These files are located in the
CASEA$CODE directory.

Subroutine HELP

The HELP subroutine displays the contents of the file TOPIC.HLP.

Functions and subroutines referenced:

CDCODE CLOSE CLS CTOLOWERC
CURSOR FRAME1 GRALPH GRMOVE
INDEX OPEN TEK_ADV

6.2.3 VAX/VMS Commands

The user may temporarily exit the CASE/A environment and enter the VAX operating system by
executing the DCL command. The subroutine DCLFOR, called by CASEA_MAIN, prompts for a DCL
command and passes it, unchanged, to LIB$SPAWN. The command is executed and, upon completion,
control is returned to DCLFOR. The user remains in DCLFOR until the command “LOGOUT” or “LO”
is given.

The user should have a subprocess quota limit that allows a process to be spawned. If this quota
is exceeded, the command will not be executed. Normal VMS diagnostic messages are displayed for
errors, etc., however, no message is given if the process cannot spawn.

It should also be noted that commands that affect only a process, such as SET DEFAULT, will
serve no purpose as they are only valid for the current process that is terminated upon completion.

Subroutine DCLFOR

This routine establishes the call to the VAX library function to allow execution of DCL
commands.

Functions and subroutines referenced:

FRAME1 TEK_ADV

53

6.2.4 Temporary Exit to VAX Editor

The user may temporarily exit the CASE/A environment and directly enter the VAX/VMS text
editor EDT. This is done by invoking the EDT editor from the subroutine EDT with the function
EDT$EDIT(filename). This command allows the user to examine the output file CASENAME.LPP or
modify the operations file CASENAME.FOR. Any other text file that is available to the user may be
edited by supplying the appropriate path and filename. Since this is an invocation of the EDT editor, all
normal EDT functions exist. When the user enters “EXIT” or “QUIT” after a CTRL-Z in the editor,
control is returned to CASEA_MAIN.

Subroutine EDT

This command routine allows the user to edit any file on VAX mass storage. The file name is
specified in the command argument list.

Functions and subroutines referenced:

CDCODE EDT$EDIT FRAME1 INDEX
TEK_ADV

6.3 Simulation Control Commands

There are several commands that assist in model development and simulation control. These
commands involve individual components such as CABINS and entire cases.

6.3.1 Subsystem Heat Load Assignment to CABINS

The CABIN component is used to simulate a cabin, compartment, or otherwise isolated
environment by tracking the respirable atmospheric compositions, mass additions/losses, and heat
transfer between equipment, other cabins, and the external orbital environment. For the CABIN to
recognize the equipment contained in it, the equipment must be assigned to the CABIN using the
ASSIGN command, as described below. For a complete description of the interactions between cabins
and the associated equipment, see section 10.0 of the User’s Manual.

6.3.1.1 ASSIGN Command

This command assigns a subsystem to a cabin. This provides the capability to address multiple
cabins with different configurations and/or environments. The ASSIGN command must be issued before
executing SOLVE. If the user fails to make a cabin assignment, the cabin air, structure, and mean
radiant environment will default to 75 ˚F from a component standpoint. The user should zero out the
environmental conductances for the components that are assumed to operate adiabatically. If the
interaction with the environment is disabled, then the ASSIGN command is not required.

Subroutine ASSIGN

This subroutine loads the NSSCAB array with the appropriate subsystem name, cabin name, and
relative cabin number of cabins that have at least one subsystem assigned to them. This
information is used to determine which subsystems will interact thermally with a given cabin.
NUMSS is the number of subsystems that have been assigned to a cabin. NUMCAB is number
of cabins that have at least one subsystem assigned to them.

54

Functions and subroutines referenced:

CDCODE CILLCHAR CTOUPPER SAVE TEK_ADV

6.3.1.2 UNASSIGN Command

This command unassigns a subsystem from a cabin. It is functionally opposite of the ASSIGN
command.

Subroutine UNASSIGN

This subroutine is functionally opposite of subroutine ASSIGN.

Functions and subroutines referenced:

CDCODE CILLCHAR CTOUPPER SAVE TEK_ADV

6.3.2 MERGE Operation

The MERGE command is particularly useful when developing large and complicated models.
Complete subsystems are constructed and verified as small, manageable cases. The individual
subsystems are then merged into the larger model. The smaller case may reside in the same directory, a
different directory, or in a directory on a different VAX host than where the larger destination model
exists. This command allows the user to include a complete subsystem (or the entire model) from a
different case in the current case. Complete subsystems can be built and verified as separate cases and
then the subsystem merged into the larger model. Development time is reduced since the models are
developed as smaller, more manageable problems and then assembled into a single model. The routine
will check for duplicate component names and solicit a new name from the user if necessary. If the user
does not want to change the name, a carriage return is entered and execution continues.

The MERGE routine queries the user if the source case is from an older version. Then the routine
prompts the user to enter the location of the source CASENAME.MOD file and the source data base
files. These locations must be of the following form:

Host “username password”::Device:[Directory]

If the user presses RETURN at this point, the current default directory is searched for the file. The user
has the option to abort the process by entering a “-1”.

Subroutine MERGE

This is a command routine that allow the user to merge an existing subsystem in a different case
into the present case. The case name and subsystem name are input by the user as command
arguments. The source case definition file is opened and all pertinent data are loaded into the
present case data. Component names between the source components and the present case
components are checked for duplication and the appropriate action is taken. The equipment data
base files are updated by creating new data base entries for the merged components.

Functions and subroutines referenced:

CDCODE CLOSE CTOLOWERC CTOUPPERC DELREC
DUPLICATE EQOPEN FINDRM FRAME1 FULL
INDEX ISTAT OPEN OPENDB_X
RANDIN RANDOU RESTOR SAVE
SETPRIM TEK_ADV

55

6.4 System Utility Routines

There are many system utility routines invoked by component routines to accomplish common
tasks. These routines perform duties such as computing property values, interpolate data, check
convergence on iteration loops, update output files and internal array values, etc. These routines are
described below.

Subroutine BENCH(M,X)

This routine updates the component benchmark data in the CON array.

Functions and subroutines referenced: NONE

Subroutine BIVAR(X,Y,A,Z)

Performs an interpolation on a bivariate array (A).

Functions and subroutines referenced: INTER

Subroutine CDEL(NEA,NEB,ISTR)

This routine is used to check convergence for the mass.

Functions and subroutines referenced: ABS DPCS

Subroutine CDELA(NEA,NEB,ISTR)

This routine records the stream and constituent with the highest change from the last iteration
value for each accumulator (TANKS, CABINS, SUMS, and NODES only).

Functions and subroutines referenced: ABS

Subroutine CILLCHAR(CISC,LEN,CHRFLG)

This routine parses names such as component names, filenames, case names, etc., to find illegal
characters in the names.

Functions and subroutines referenced:

CHAR ICHAR TEK_ADV

Subroutine CONINIT

This routine is used at the beginnng of the solution to initialize the output CON location.

Functions and subroutines referenced: NONE

Subroutine CONV(X,Y,NC,CRELAX,XLAST,YLAST)

This routine is a convergence iteration routine used for implicit solutions.

Functions and subroutines referenced: NONE

56

Subroutine CORRECT(NC)

This routine adjusts the mass fraction of a connection to sum to 1.0. Corrects round off errors.

Functions and subroutines referenced: NONE

Subroutine CTOLOWERC(CCHAR,NCHAR)

This subroutine converts the character array CCHAR of NCHAR characters from uppercase
characters to lowercase.

Functions and subroutines referenced: ICHAR

Subroutine CTOUPPERC(CCHAR,NCHAR)

This subroutine converts the character array CCHAR of NCHAR characters from lowercase
characters to uppercase.

Functions and subroutines referenced: ICHAR

Subroutine DEL(IREC)

This routine is used to delete the last record written to the data base.

Functions and subroutines referenced:

ABS LBIT RANDIN RANDOU
SETPRIM

Subroutine DENVIS(NEA,NSA,NEB,NSB,DEN,VIS)

This routine returns the average density (DEN) and viscosity (VIS) for a flow between
components NEA and NEB in the stream connected by NSA and NSB.

Functions and subroutines referenced: NONE

Function DEWPT(PARTIAL_PRESS)

This routine is used to determine the dewpoint of air based on the water vapor partial pressure.

Functions and subroutines referenced:

INTER TEK_ADV

Subroutine DINTER(X,A,Y)

This routine performs an interpolation of single arrays with all of the arguments in double
precision.

Functions and subroutines referenced: NONE

Subroutine DIST (IX1, IY1, IX2, IY2, XD)

This routine returns the sum of the squares, XD, of the horizontal and vertical distances between
the coordinates (IX1, IY1) and (IX2, IY2).

57

Functions and subroutines referenced: NONE

Subroutine DUPLICATE(IREC,JREC)

This routine is used to duplicate a record in the data base.

Functions and subroutines referenced:

FINDRM INDEX OPENDB_X RANDIN
RANDOU RESTOR SETPRIM

Subroutine ERRDUMP(ITEST)

This routine displays error messages on the screen.

Functions and subroutines referenced: DPCS TEK_ADV

Subroutine FINDC(IEQ)

This routine is used to load the NPT array with pointers to the correct “C” array location for the
component being solved.

Functions and subroutines referenced: SMVBITS

Subroutine FLOLEG(XM,DEN,VIS,XL,XD,XK,PDEL,MAX)

This routine is used to calculate flow conductance for resistance and flow information by
iteration upon press drop “PDEL”.

Functions and subroutines referenced: FRICTDP

Subroutine GIMAG(IEQB,ISTB,NCPT,PDEL,MAX,GIX)

This routine calculates the flow conductance “GI” for stream “ISTRM” for a given pressure drop
“PDEL” and mass flow rate. It is utilized in several flow balancing components.

Functions and subroutines referenced:

CONV DENVIS FRICTDP LOG10

Subroutine INTER(X,A,Y)

This routine performs an interpolation of single arrays.

Functions and subroutines referenced: TEK_ADV

Subroutine KHECK(NUSTM)

This subroutine calls the convergence check routines for all of a component’s streams.

Functions and subroutines referenced:

CDEL CORRECT PDEL TDEL

58

Subroutine KHECKA(NUSTM)

This routine performs the same function as KHECK but does not increment the LPCS count.

Functions and subroutines referenced:

CDELA CORRECT PDEL TDELA

Subroutine LOADCOND(IEQA,ISTA,IEQB,ISTB,XM,DP)

This routine loads pressure drop (DP) and flow rate (XM) into the “FLOCOND” array.

Functions and subroutines referenced: TEK_ADV

Subroutine MASSFRAC(NUM,YI,XMWI,XI)

This subroutine accepts an input number of constituents (NUM), an array of constituent mole
fractions (YI) and an array of constituent molecular weights (XMWI) and calculates a
corresponding array of mass fractions (XI).

Functions and subroutines referenced: NONE

Subroutine MODBAK

This routines creates a backup model file CASENAME.BAK.

Functions and subroutines referenced:

CLOSE CTOLOWERC INDEX OPEN
TEK_ADV

Subroutine MOLEFRAC(NUM,PRESSI,YI)

This subroutine accepts an input number of constituents (NUM) and an array of constituent
pressures (PRESSI) and calculates a corresponding array of mole fractions (YI).

Functions and subroutines referenced: NONE

Subroutine PASSIVE(NSTM,NSI,NSO)

This routine checks to see if a passive outlet stream, NSO, is connected to an active inlet stream,
NSI.

Functions and subroutines referenced: DPCS SCALER

Subroutine PDEL(NS)

This routine determines component relaxation of the pressure calculations.

Functions and subroutines referenced: ABS DPCS

Subroutine POINTCON

This routine determines the pointers (NINP,NOUT,NBEN) for the CON array locations for each
component.

59

Functions and subroutines referenced: NONE

Subroutine PREPRO

This subroutine is used to convert OPS files from using the interface routines to using direct
references.

Functions and subroutines referenced:

CDCODE CILLCHAR CTOUPPERC EQLOAD FINDC
LIB$INDEX PSEUDO TEK_ADV

Function ROWATER(TEMP)

This function determines the density of water vapor at a given temperature TEMP. This routine
is located in PROPS.FOR.

Functions and subroutines referenced: NONE

Subroutine PULLSTX

This routine is used by the controller routine to pull the memory stack down one location. It is
located in CNTRLLR.FOR.

Functions and subroutines referenced: NONE

Subroutine PUSHSTX

This routine is used by the controller routine to push the memory stack up one location. It is
located in CNTRLLR.FOR.

Functions and subroutines referenced: NONE

Subroutine QEXCHG(IQ,FAE,GCONV,GCOND,TRAD,TCONV,TCOND)

This subroutine calculates the heat exchange between components and the assigned cabin
environment.

Functions and subroutines referenced: TBOUND

Subroutine RBIVAR(X,Y,A,Z)

This routine is a bivariate interpolation routine that works in reverse to BIVAR .

Functions and subroutines referenced: INTER

Subroutine RINTER(Y,A,X)

This subroutine allows interpolation from a single array in reverse order of subroutine “INTER”.

Functions and subroutines referenced: TEK_ADV

60

Subroutine SAVEAS(NAME)

This routine creates a new case from the current case by duplicating all the data base entries with
the new casename NAME. It also creates a new MOD file. The new case becomes the default.

Functions and subroutines referenced:

DUPLICATE EQOPEN FRAME1 ISTAT MODBAK
RANDIN RANDOU SAVE TEK_ADV

Subroutine SCALE(IST)

This routine is used to convert the mass fractions in the C array to mass flow rate and back to
fractions. The routine has two ENTRY points:

ABS SCALEUP(IST) SCALEDN(IST)

It is called first during a component routine as SCALEUP(IST) so that computations can be done
by mass flow rate. At the end of the routine it is called as SCALEDN(IST) to convert back to
mass fractions. IST is the stream number to be “scaled.”

Functions and subroutines referenced: NONE

Subroutine SCALER(ISTRM,NSTRM,DESFLW,ALWFLOW)

This routine is used to scale the requested flowrate from a store device to the available quantity
for that iteration.

Functions and subroutines referenced:

ABS DPCS FINDC

Subroutine SUMINIT

This routine initializes the summary arrays for the simulation wrap up.

Functions and subroutines referenced: NONE

Subroutine TBOUND(IQ,TRAD,TCONV,TCOND)

This subroutine retrieves the environmental temperatures for the components.

Functions and subroutines referenced: NONE

Subroutine TDEL(NS)

This routine determines the relaxation values for temperature for a given component.

Functions and subroutines referenced: ABS DPCS

Subroutine TDELA(NS)

This routine is the same as TDEL but used for a given stream (used in the STORE and CABIN
logic).
Functions and subroutines referenced: ABS

61

Subroutine TIMESTEP(TSTEP,N,GSUM,CAPAC,TAU,MINILPS)

This routine determines a time constant TAU and number of subtime steps (MINILPS) for a
system of N diffusion nodes (N=10 max).

Functions and subroutines referenced: NONE

Subroutine TSTEP(A,B,C,D)

This routine is used to calculate the largest difference between A-C and B-C.

Functions and subroutines referenced: NONE

6.5 Model Archive Routines

The archive process (new in version 5.0) provides the user with the ability to store CASE/A
simulation solution files to a specified directory. These files can be retrieved for later use. There are two
steps to archiving a model: (1) edit the archive data base to describe general information about the
archived models, (2) initiate the archive process to save the data to an archive file. Routines called to
support step 1 are described in section 3.2, Interactive Editing, of this manual. Routines that support step
2 are described next.

Subroutine ARCHIVE

This routine stores the currently loaded CASEA model data to an ASCII file and is called
directly from CASEAMAIN upon entry of the ARCHIVE command. The routine prompts the
user for the name of the model that is to be archived and other pertinent information. If the user
continues, the archive directory is determined and plotsets, ops code, .MOD file, or whatever is
selected by the user to be archived is copied to this directory. If the archive process succeeds, a
message stating “ARCHIVE OPERATION FINISHED” is written to the terminal and control is
returned to CASEAMAIN.

Functions and subroutines referenced:

ARCHFILE CTOLOWERC EQOPEN MERGE_OUT
RANDIN TEK_ADV

Subroutine ARCHFILE

This routine is called by ARCHIVE to check for active archive sets in the IA array. If more than
one is active, the user is warned and only the first set is used. If none are found, a warning
prompt is given to the user and the routine returns.

Functions and subroutines referenced: TEK_ADV

Subroutine RETRIEVE

This routine is invoked when the user enters the RETRIEVE command. It provides the user with
a method to retrieve a previously archived file. This routine first prompts the user for the
directory and file containing the archive file, then calls MERGE_IN to read the archive file data
into the currently loaded model.

62

Functions and subroutines referenced:

ANSWER CTOLOWERC
GET_SET_DDIR (contained in RETRIEVE) MERGE_IN

63

SECTION 7. USER OPERATIONS LOGIC AND INTERNAL CASE/A DATA ACCESS

CASE/A provides for user-written computational logic at strategic points during the simulation.
This capability is similar to that of programs like SINDA (VARIABLES1, VARIABLES2) and G189A
(GPOLY1, GPOLY2). CASE/A provides seven such opportunities in the subroutines OPS0 to OPS6.
Additionally the subroutine OPS7 is provided during component simulation as a “BLACKBOX”. These
program modules, referred to as “OPS LOGIC”, provide for such things as custom variable initializa-
tion, time-dependent forcing functions, specialized output, etc. The use of OPS logic is presented in
detail in chapter 7 and examples of use are provided in models WCM and MB6 in appendix A of the
CASE/A User’s Manual. This section provides a brief introduction to OPS logic and a guide to link user
OPS logic with the CASE/A library.

7.1 OPS Logic Description

• OPS0, PREINITIALIZATION—This routine is called prior to execution of the component
100 block (data initialization). It is useful for initializing custom output variables, opening
output files, and changing values contained in the data base prior to their use in the 100 block.

• OPS1, PRESIMULATION—This routine is similar in nature to OPS0, however, it executes
just after the component 100 block. Thus, this routine is useful for initializing data that
depends on initial conditions of the components.

• OPS2, PRETIME STEP—This subroutine is especially useful for doing time-dependant
computations to impose time-variant conditions on the system. OPS2 is called every time step
just prior to iteration.

• OPS3, INTERNAL SYSTEM ITERATION—The OPS3 logic executes every system
iteration. It proves most useful in debugging when the user wishes to examine data or print
diagnostic messages during the simulation. It is also used as a tool for performing conditional
tests for feedback control.

• OPS4, POSTTIME STEP—Executed just after convergence of the system is obtained, but
prior to incrementing the time, this block is useful for updating output files and performing
integration functions.

• OPS5, OUTPUT INTERVAL—This routine is executed after OPS4 but only at the specified
output interval. It is useful for performing operations that should coincide with the system
output interval.

• OPS6, SIMULATION END—This routine is called after the simulation end time is reached. It
is used to perform post sim output user wrap-up operations such as closing files.

7.2 Creation of User OPS Logic

OPS logic should be created in the user’s directory (in the current working subdirectory). A
logical approach to this is to first copy the file OPS.FOR from the CASEA$CODE directory to the
user’s directory under the name of the current case:

$copy casea$code:ops.for disk:[user.directory]casename.for

The next step is to edit this file with a text editor and code the logic required. Even if no code is
placed into a subroutine, it is important that each subroutine be left intact, since the subroutines are

64

called regardless of whether they perform any function or not. An example of this completed OPS logic
might look as follows:

 SUBROTINE OPS0
C PRE-SIMULATION USER-DEFINED CODE
 RETURN
 END
C
C
 Subroutine OPS1
 INCLUDE ‘SYS$CASEA:COMPCOM.INC’
C
C OPS1 LOGIC - PRE SIMULATION. The OPS1 subroutine for this case
C is used for initialization of data parameters and resequencing
C of the solution procedure.
C
 COMMON /ONE/ THW,TSHWR,TDWSH,TLDRY
 COMMON /TWO/ NHW,NSHWR,NDWSH,NLDRY
 COMMON /THREE/ DT1,DT2,DT3,DT4
 COMMON /FOUR/ IFLG,JFLG,KFLG,LFLG
 COMMON /FIVE/ TSTRT1,TSTRT2,TSTRT3,TSTRT4
 COMMON /SIX/ TSTOP1,TSTOP2,TSTOP3,TSTOP4
 COMMON /SEVEN/ NCREW,TFLG1,II,ICTRH,ICTRS,ICTRD,ICTRL
 COMMON /TEST/ SRCFLO,KFLAG
 COMMON /FLORATS/ F1SET,F2SET,F3SET,F4SET
 CALL GETU(1,THW)
 CALL GETU(2,TSHWR)
 CALL GETU(3,TDWSH)
 CALL GETU(4,TLDRY)
 CALL GETU(5,XNHW)
 CALL GETU(6,XNSHWR)
 CALL GETU(7,XNDWSH)
 CALL GETU(8,XNLDRY)
 CALL GETU(9,DT1)
 CALL GETU(10,DT2)
 CALL GETU(11,DT3)
 CALL GETU(12,DT4)
 CALL GETU(13,XIFLG)
 CALL GETU(14,XJFLG)
 CALL GETU(15,XKFLG)
 CALL GETU(16,XLFLG)
...
 CALL SEQUENCE(‘PS3 ‘)
 CALL SEQUENCE(‘S4 ‘)
 CALL SEQUENCE(‘PR4 ‘)
 CALL SEQUENCE(‘DSHWSH ‘)
 CALL SEQUENCE(‘PR5 ‘)
 CALL SEQUENCE(‘LDRY ‘)
 CALL SEQUENCE(‘SEQSTOP ‘)
 CALL SETK(‘S1 ‘,11,0.5)
 CALL SETK(‘S1 ‘,12,0.5)
 CALL SETK(‘S2 ‘,11,0.5)
 CALL SETK(‘S2 ‘,12,0.5)
 CALL SETK(‘S3 ‘,11,0.5)
 CALL SETK(‘S3 ‘,12,0.5)
 CALL SETK(‘S4 ‘,11,0.5)
 RETURN
 END
C
C
C
 Subroutine OPS2
 INCLUDE ‘SYS$CASEA:COMPCOM.INC’
C
C OPS2 LOGIC - BEFORE EACH TIME STEP. The OPS2 subroutine will be

65

C used to control the flow of hot water at the handwash, shower,
C dishwash and laundry facilities according to the timeline described
C in section A.3.1.
C
 COMMON /ONE/ THW,TSHWR,TDWSH,TLDRY
 COMMON /TWO/ NHW,NSHWR,NDWSH,NLDRY
 COMMON /THREE/ DT1,DT2,DT3,DT4
 COMMON /FOUR/ IFLG,JFLG,KFLG,LFLG
 COMMON /FIVE/ TSTRT1,TSTRT2,TSTRT3,TSTRT4
 COMMON /SIX/ TSTOP1,TSTOP2,TSTOP3,TSTOP4
 COMMON /SEVEN/ NCREW,TFLG1,II,ICTRH,ICTRS,ICTRD,ICTRL
 COMMON /TEST/ SRCFLO,KFLAG
 COMMON /FLORATS/ F1SET,F2SET,F3SET,F4SET
C
 IF (ICTRH .NE. 4) THEN
 IF (TIME .GE. TSTRT1 .AND. IFLG .EQ. 1) THEN
 IFLG = 0
 ENDIF
 IF (TIME .GE. TSTOP1 .AND. IFLG .EQ. 0) THEN
 IFLG = 1
 TSTRT1 = TIME + DT1 ! set start time for next
 TSTOP1 = TSTRT1 + THW ! crew members handwash
 II = II + 1 ! during the present cycle
 IF (II .EQ. NCREW) THEN
 TSTRT1 = TFLG1 + 4.0 ! begin the next handwash cycle
 TSTOP1 = TSTRT1 + THW ! 4 hours after the beginning
 TFLG1 = TFLG1 + 4.0 ! of the previous cycle
 II = 0
 ICTRH = ICTRH + 1
 ENDIF
 ENDIF
 ENDIF
.
.
.
.
 SPLT2L2 = FLO12/FLOTOT ! split frac of leg 2 of S2
 CALL SETK(‘S2 ‘,11,SPLT2L1)
 CALL SETK(‘S2 ‘,12,SPLT2L2)
C
 SPLT4L1 = FLO4/FLO34 ! split frac of leg 1 of S4
 SPLT4L2 = FLO3/FLO34 ! split frac of leg 2 of S4
 CALL SETK(‘S4 ‘,11,SPLT2L1)
 CALL SETK(‘S4 ‘,12,SPLT2L2)
C
 SPLT1L1 = FLO1/FLO12 ! split frac of leg 1 of S1
 SPLT1L2 = FLO2/FLO12 ! split frac of leg 2 of S1
 CALL SETK(‘S2 ‘,11,SPLT2L1)
 CALL SETK(‘S2 ‘,12,SPLT2L2)
 ENDIF
C
 RETURN
 END
C
C
C
 Subroutine OPS3
C
C OPS3 LOGIC - EACH ITTERATION
c
c *** NOTE THAT THIS Subroutine SHOULD BE INCLUDED IN CASEANAME.FOR
c *** EVEN THOUGH IT DOESNT DO ANYTHING
C
30 RETURN
 END
C

66

C
C
 Subroutine OPS4
 INCLUDE ‘SYS$CASEA:COMPCOM.INC’
C
C OPS4 LOGIC - AFTER EACH TIME STEP. The OPS4 subroutine will be
C used for adjustment of certain parameters associated with the
C STORE component (WTRTNK). Output parameters of interest for this
C case are evaluated graphically using the Integrated Plot Utility.
C
 COMMON /TEST/ SRCFLO,KFLAG
C
C
 CALL GETK(‘WTRTNK ‘,19,WMASI) ! initial tank contents mass
 CALL GETK(‘WTRTNK ‘,73,WMAS) ! current tank contents mass
C
.
.
.
.
 TL = SV*4.0/3.14159
 GWALL = 0.3996*TL + 0.157
 AO = 5.3668*TL + 1.704
 GCONV = 0.2*AO
 GRAD = 0.1714E-8*AO*0.05*0.9
C
 CALL SETK(‘WTRTNK ‘,12,GCONV) ! reset tank convection, radiation
 CALL SETK(‘WTRTNK ‘,13,GRAD) ! and wall conductor conductance
 CALL SETK(‘WTRTNK ‘,15,GWALL) ! values
C
 RETURN
 END
C
C
C
 Subroutine OPS5
C
C OPS5 LOGIC - EACH OUTPUT INTERVAL
c
c *** NOTE THAT THIS Subroutine SHOULD BE INCLUDED IN CASEANAME.FOR
c *** EVEN THOUGH IT DOESNT DO ANYTHING
C
 RETURN
 END
C
C
C
 Subroutine OPS6
C
C OPS6 LOGIC - POST SIMULATION
c
c *** NOTE THAT THIS Subroutine SHOULD BE INCLUDED IN CASEANAME.FOR
c *** EVEN THOUGH IT DOESNT DO ANYTHING
C
 RETURN
 END
C
C
C
 Subroutine OPS7
C
C OPS7 LOGIC - BLACKBOX SIMULATION
C
 RETURN
 END

67

A complete description of this problem is in appendix A of the User’s Manual.

The next step is to compile the program and link with the rest of the CASE/A object library. It is
important to note that compilation and linking must be done every time the OPS Logic file is modified
to effect a change in the simulation. This procedure is accomplished as follows:

$ fortran/nooptimize/nodebug/check=bounds/continue=45 casename.for
$ @casea$code:linkcas casename
$ run/nodebug casename

This procedure will compile the code and give the option to use the debugger if required.
LINKCAS.COM links with the object code located in the directory CASEA$CODE and creates an
executable CASENAME.EXE. The nodebug qualifier should be left out of the RUN statement if the
user wishes to use the VMS debugger. It is beyond the scope of this manual to present the use of the
debugger. LINKCAS is described in the User’s Manual.

Subroutine OPS0

OPS0 logic is called by the SOLVE routine prior to the component 100 block.

Functions and subroutines referenced:

Any CASE/A or user-written subroutine can be called.

Subroutine OPS1

OPS1 logic is called by SOLVE prior to simulation but after the component 100 block.

Functions and subroutines referenced:

Any CASE/A or user-written subroutine can be called.

Subroutine OPS2

OPS2 logic is called prior to each time step by SOLVE.

Functions and subroutines referenced:

Any CASE/A or user-written subroutine can be called.

Subroutine OPS3

OPS3 logic is called by SOLVE each iteration until convergence.

Functions and subroutines referenced:

Any CASE/A or user-written subroutine can be called.

Subroutine OPS4

OPS4 logic is called by SOLVE after convergence but before time is incremented.

Functions and subroutines referenced:

Any CASE/A or user-written subroutine can be called.

68

Subroutine OPS5

OPS5 Logic is called by SOLVE after OPS4 but only when the time is a multiple of the output
interval SYSOUTPT.

Functions and subroutines referenced:

Any CASE/A or user-written subroutine can be called.

Subroutine OPS6

OPS6 Logic is called by SOLVE after the end of a simulation to allow for postsimulation
wrap-up.

Functions and subroutines referenced:

Any CASE/A or user-written subroutine can be called.

Subroutine OPS7

OPS7 Logic is called by SOLVE to simulate a blackbox component defined by the user.

Functions and subroutines referenced:

Any CASE/A or user-written subroutine can be called.

Normally the user will create a subroutine for the blackbox component and call this routine in
OPS7 logic when OPS7 is called by SOLVE (for example, see example 2 – MB6 in the CASE/A
User’s Manual section 1).

7.3 Case/A Internal Data Communication Arrays

It may be useful for the user to check or vary the value of “internal” data associated with the
simulation. There are five main arrays that CASE/A uses to communicate data to and from the different
routines in the program. These arrays, and the subroutines used to manipulate them, are described here
and in chapter 7 of the User’s Manual. These very important data structures, which are used extensively
in modeling systems with CASE/A, are the CON, C, PRO, USERCON, and D arrays. The subroutines
used to store and retrieve data are described in section 7.3.6.

7.3.1 The “CON” Array

The CON array can be thought of as a “LIST” of component data for every component in the
simulation (fig. 17). This “LIST” is comprised of 75,000 “CELLS” grouped into SEGMENTS. Each
SEGMENT contains all of the data for a component. For each simulation, there are NEQ (number of
active pieces of equipment) SEGMENTS. The remaining portion of the array is unused. The relative
equipment number IEQ is used throughout the simulation to refer to a SEGMENT in this array for a
component.

Each segment is divided into four contiguous BLOCKS:

(1) Fixed Block contains nine fixed parameters that exist for every component. LFXD in the
lower part of figure 16 is a constant set to nine, which refers to the length of this block.

The next three blocks are variable in length for every component type:

69

(2) Input Block contains the INPUT data for the component, and its length is determined by the
variable LINP.

(3) Output Block contains the OUTPUT data and its length is determined by the variable
LOUT.

(4) Benchmark Block contains the BENCHMARK data, and its length is determined by the
variable LBEN.

Thus, the total length of each segment would be LFXD+LINP+LOUT+LBEN.

The beginning of each block of data is determined by an integer pointer to the first cell of the
block. These pointers are NFXD, NINP, NOUT, and NBEN, which point to the absolute location in the
CON array for the FIXED, INPUTS, OUTPUTS, and BENCHMARKS blocks, respectively. These
pointers are calculated in the POINTCON routine as follows:

NFXD = ICP(IEQ) - 1
NINP = NFXD + LFXD
NOUT = NINP + LINP
NBEN = NOUT + LOUT

where: ICP is an array of pointers to the beginning location in CON
array for each component segment
 LFXD = 9
 LINP = CON(NFXD+1)

LOUT = CON(NFXD+2)
LBEN = CON(NFXD+3).

Figure 17 shows the arrangement of the CON array. Also, refer to chapter 7 of the User’s Manual.

7.3.2 The “C” Array

The C array, or composition array, is used to track the fluid mass flow rate and composition for
each of the component fluid streams. This 54 by 1,500 array can track up to 49 constituents for 1,500
connecting streams. The first index of the C array is for flow rate and composition and the second is for
the stream connection number. The C array is graphically shown in figure 18.

Location (1, “stream number”) of the C array is always mass flow rate in lbm/h. The next 49
locations are for mass fractions of the fluid constituents in the stream of interest (these fractions should
sum to 1.0). The first eight of these constituents are defaults shown in table 2. The variable NTRACK
(not contained in the C array) is equal to the index location of the last constituent tracked. Thus, if the
defaults only are used, NTRACK would be equal to nine. The next four locations, NTRACK+1,
NTRACK+2, NTRACK+3, and NTRACK+4, have special meanings for several routines and should not
be used arbitrarily.

If the user needs to track compounds other than the eight default, several steps are required. First,
the PROPS routine should be modified to obtain the properties of that compound. This new PROPS
routine would then be linked with the rest of the CASE/A library in the same manner as OPS logic. The
CONTROLS data base should be edited next and the value of NTRACK changed from 9 to the total
constituents to be tracked (plus one for mass flow rate). Finally, the LABELS data base can be edited to
associate a name with that location of the C array.

Most components require a number of C locations equal to the number of inlet and outlet
streams. For example, a PUMP requires two C locations, one for the inlet and one for the outlet (as
shown for IEQB in fig. 18). Other components, however, require additional C locations to account for

70

mass accumulation and other processes. For instance, the FILTER component uses four C locations—
one for the inlet, one for the outlet, and two to keep track of matter accumulating on the filter media. In
general, a component may have up to 8 streams (refer to components in section 10 of the User’s
Manual). Each stream is referenced in the component routine by the array NPT. For example, NPT(3)
refers to stream 3 of the component currently being processed. The value contained in NPT(3) is the
index into the C array for that stream.

The next

"LINP"

locations

contain the

INPUT data

for the

current IEQ.

The starting

location for

each IEQ's

first INPUT

datum is at

NINP + 1

These 9

'FIXED'

locations are

same for each

component

(words 7–15 in

database).

First location

for each IEQ

begins at

 NFXD + 1

or

 ICP (IEQ)

1st input

2nd input

• • •

last input

1st bench

2nd bench

• • •

last bench

1st output

2nd output

• • •

last ouput

The next "LOUT"

locations contain

the OUTPUT data

for the current

IEQ. The

starting location

for each IEQ's

first OUTPUT datum

is at

 NOUT + 1

The next

"LBEN"

locations

contain the

BENCHMARK

data for the

current IEQ.

The starting

location for

each IEQ's first

BENCHMARK

datum is at

NBEN + 1

ICP (IEQ) or NFXD + 1

NFXD + 2

• • •

NFXD + 9

of INPUTS

of OUTPUTS

of BENCHMARKS

CDEL RXCC

TDEL RXCC

PDEL RXCC

POWER

WEIGHT

VOLUME

NINP + 1

NINP + 2

• • •

NINP + LINP

NBEN + 1

NBEN + 2

• • •

NBEN + LBEN

NOUT + 1

NOUT + 2

• • •

NOUT + LOUT

FIXED

CON ARRAY

FIRST SEGMENT (COMPONENT #1)

SEGMENT 'IEQ'

SEGMENT 'NEQ'

INPUTS

OUTPUTS

BENCHMARKS

FIXED

INPUTS

OUTPUTS

BENCHMARKS

'FIXED' BLOCK

'INPUTS' BLOCK

'OUTPUTS' BLOCK

'BENCHMARKS' BLOCK

#cells = LINP

#cells = LBEN

#cells = LFXD = 9

#cells = LOUT

Figure 17. The “CON” array.

71

...

Mass Flow Rate (1)

Oxygen (2)

Nitrogen (3)

Carbon Dioxide (4)

Hydrogen (5)

Carbon (6)

Methane (7)

Water (8)

Freon-11 (9)

user -defined constituent (10)

...

...
...

...
user -defined constituent (50)

(NTRACK + 1) Leq

(NTRACK + 2) Deq

(NTRACK + 3) Pressure Code

(NTRACK + 4) Scale Factor

co
nn

ec
tio

n 1

co
nn

ec
tio

n 2

co
nn

ec
tio

n 3

co
nn

ec
tio

n N
PT(1

)

...

...

co
nn

ec
tio

n #
NCON-2

co
nn

ec
tio

n #
NCON-1

co
nnecti

on #NCON

...

IEQA IEQB

PRO(i,IEQA,1), i=1,8 PRO(i,IEQA,2), i=1,8 PRO(i,IEQB,1), i=1,8 PRO(i,IEQB,2), i=1,8

Stream 1

component component
Stream 2 Stream 2Stream 1

constituents in component streams are referenced
using NPT(1) for inlet stream and NPT(2) for outlet stream
of component

C and PRO array layout

rows contain
mass flow rate
constituent
mass fractions
& other information

columns contain
connections
within model

{C (row, column)}

co
nn

ec
tio

n N
PT(2

)

...

...

i-designates property of the stream
(refer to table 3)

Stream Numbers:

Figure 18. Stream properties and composition arrays.

72

Table 2. “C” array default constituents.

 LOCATION CONTENT Units

1 Total Mass Flow Rate Lbm/Hr
2 Oxygen Mass Fraction
3 Nitrogen Mass Fraction
4 Carbon Dioxide Mass Fraction
5 Hydrogen Mass Fraction
6 Solid Carbon Mass Fraction
7 Methane Mass Fraction
8 Water Mass Fraction
9 Freon - 11 Mass Fraction
10 Constituent 10 Mass Fraction
11 Constituent 11 Mass Fraction
12 Constituent 12 Mass Fraction
. . .
. . .
. . .
50 Constituent 50 Mass Fraction

NTRACK+1 Equivalent Length Feet
NTRACK+2 Equivalent Diameter Inches * 100
NTRACK+3 Pressure Feedback Code
NTRACK+4 Scale Factor

The subroutine PSEUDO is used to keep track of the pointers that give access to the C array. The
subroutines GETC and SETC are available to store and retrieve data in this array.

7.3.3 The “PRO” Array

The PRO array stores the thermodynamic properties for each component stream (refer to the
bottom of figure 18). This three-dimensional array can track up to 12 properties for 1,000 components
with up to 8 streams each using the first, second, and third indexes, respectively. The properties
represented by the first index value are shown in table 3. Note that there is room for future expansion or
user-defined properties since the array is dimensioned to 12 and only 8 properties are tracked. The
routines SETP and GETT are used to store and retrieve data from this array.

Table 3. “PRO” array properties list.

 LOCATION CONTENT

1 Pressure, lb/in2 absolute
2 Temperature, Fahrenheit
3 Specific Heat (Cp), Btu/(lbm°F)
4 Density, lbm/ft3

5 Viscosity, lbm/(h.ft)
6 Specific Heat (Cv), Btu/(lbm°F)
7 Molecular Weight, lbm/lb-mole
8 Enthalpy, Btu/lbm

73

7.3.4 The “USERCON” Array

CASE/A provides an additional array that is carried in the common block /USERCON/ in
CASEA$CODE:GRAPHCOM.INC. This one-dimensional array can be used to store data and
communicate it throughout the simulation. Up to 100 different parameters can be tracked with this array.
Each location can be associated with a label by editing the USERCON data base.

This array is a one-dimensional single precision real array and can be accessed directly or with
the GETU and SETU routines. Upon completion of the simulation, the final values of each location are
stored in the data base. Thus, this array should be initialized by the user in OPS0 logic for each new
simulation unless data accumulation is the desired result.

7.3.5 The “D” Array

The D array dimensioned to D(1000,50) is a system level array used in the component
subroutines. The first index is the relative equipment number (IEQ) for a component in a given case.
The second index represents 50 available locations for “random” use. Many components use the D
array. Each routine should be examined to determine what if anything is stored in locations 1 to 50. The
purpose of this array is to provide access to variables internal to a component routine that are not
otherwise available to the user (i.e., through the component edit screen). After careful checking that an
array location is free, an experienced user is encouraged to exploit this array to access internal
calculations of a component. Note that to reference the array one should use the form D(IEQ,i) where i
is the desired location and IEQ is set by the system in the SOLVE routine.

7.3.6 Storage and Retrieval Functions for CASE/A Arrays

The subroutines used to store data into and retrieve data from the CON, C, PRO, and USERCON
arrays are described below.

Subroutine GETC(NAME,ISTR,ICONST,VALUE)

This routine retrieves a value from the C array. It returns the VALUE of the ICONST constituent
number of the ISTR stream for the component NAME.

Functions and subroutines referenced: TEK_ADV FINDC

Subroutine GETI(NAME,IEQVAL)

This routine returns the relative equipment number (IEQVAL) for the component NAME. It can
be used in conjunction with the GETK routine to get the value of ICON.

Functions and subroutines referenced: TEK_ADV

Subroutine GETK(NAME,ICON,VALUE)

This routine is used to retrieve data from the CON array. NAME is a CHARACTER*8 variable
(INTEGER*4(2)). The routine returns the VALUE of the ICON relative location for the
component NAME.

Functions and subroutines referenced: TEK_ADV

Subroutine GETP(NAME,ISTR,VALUE)

This routine returns the VALUE from the PRO array of the pressure of stream ISTR for the
component NAME.

74

Functions and subroutines referenced: TEK_ADV

Subroutine GETPP(NAME,ISTR,ICONST,PP)

This routine returns the partial pressure for the equipment name and stream and user-specified
constituent ICONST.

Functions and subroutines referenced: TEK_ADV FINDC

Subroutine GETT(NAME,ISTR,VALUE)

This routine is similar to GETP but returns temperature.

Functions and subroutines referenced: TEK_ADV

Subroutine GETU(ILOC,VALUE)

This is used to get a value from the USERCON array. It returns the VALUE of the ILOC
location.

Functions and subroutines referenced: TEK_ADV

Subroutine SETC(NAME,ISTR,ICONST,VALUE)

This routine is functionally opposite to GETC in that it stores a value in the C array.

Functions and subroutines referenced: TEK_ADV FINDC

Subroutine SETK(NAME,ICON,VALUE)

This routine is the opposite of GETK in that it stores a VALUE in the CON array.

Functions and subroutines referenced: TEK_ADV POINTCON

Subroutine SETP(NAME,ISTR,VALUE)

This routine is functionally opposite to SETP in that it stores a value in the PRO array.

Functions and subroutines referenced: TEK_ADV

Subroutine SETT(NAME,ISTR,VALUE)

This routine is functionally opposite GETT. It stores a temperature in the PRO array.

Functions and subroutines referenced: TEK_ADV

Subroutine SETU(ILOC,VALUE)

This routine is used to set the ILOC location of the USERCON array to VALUE.

Functions and subroutines referenced: TEK_ADV

75

Subroutine PREPRO

This routine is the OPS logic preprocessor discussed in section 7.5 of the User’s Manual. The
preprocessor helps speed execution by eliminating dependence on the GET and SET routines
discussed above. GET and SET routines search from 1 to NCOMP until finding the correct
equipment name before retrieving or depositing data. The preprocessor optimizes this process by
writing OPS code to access the correct array (C, PRO, CON) location directly.

Functions and subroutines referenced:

CDCODE CILLCHAR CTOLOWERC CTOUPPERC
FINDC FOR$CLOSE FOR$OPEN LIB$INDEX
PSEUDO TEK_ADV

76

SECTION 8. ANALYTICAL TECHNIQUES

This section discusses the techniques used to perform hydraulic and thermal computation. The
major subroutines used in these computations are described briefly along with the functions and sub-
routines called by them.

8.1 System Pressure Computations

CASE/A provides two methods of computing pressure at key points in the system. These two
methods are toggled by the variable MATRXFLG from the CONTROL data base.

8.1.1 Matrix Reduction Pressure Solution

The default method of determining the system pressures is the solution of a set of simultaneous
equations by matrix reduction. This set of equations, discussed in section 8.2.1 of the User’s Manual, is
obtained by conservation of mass at each pressure node. The mass flows and compositions are set by the
component routines, while the pressures are calculated by the system using the routine SYSBAL.

The overall hydraulic balance usually requires several iterations in that the components make
successive “guesses” at the flow rates based on the system calculated pressures. The linearized flow
conductor between two nodes is thus a function of the flow rate and pressure difference occurring
between them.

The system solution methodology is based on the concept of the subdivision of the entire
hydraulic layout of the case into separate subnetworks that are terminated by boundary pressure nodes or
sources and sinks. These subnetworks may be connected by shared boundary pressure nodes (i.e.,
STORE’s and CABIN’s). A set of simultaneous equations is set up and solved for each of these subnet-
works individually. This is done in order to decrease the computational resources that would be required
to solve a large set of equations for all nodes in the case. The matrix solution used is the symmetric
Cholesky method derived from SINDA/SINFLO. Each of the subnetworks should have at least one
boundary pressure or a singular matrix condition occurs in that no solution is possible. In this case, an
arbitrary node in the network will be taken as a boundary node and the rest of the pressures calculated
accordingly. The user is notified with a run-time warning if this situation occurs.

Subroutine SYSBAL

This routine is responsible for solving for the system pressures given flow rates and conductor
values as described above and in the User’s Manual. The routines used by this routine are not
discussed here, but are documented in the file SYSBAL.FOR.

Functions and subroutines referenced:

CONCALC DPOFA DPOSL GFINIT
PSPCFD SETFLO TEK_ADV

8.1.2 Hydraulic Solution

The hydraulic solution system is responsible for the pressure drop and mass flow balance versus
flow resistance calculations on both the component and system levels. The hydraulic solution is based
on an implicit solution method that relies on feedback of the downstream pressures to the upstream
components through the flow path connections. This feedback approach allows the characteristics of a

77

closed flow path to be sensed by the component, which initiates the mass flow while it is in direct com-
munication only with the immediately adjacent components. Thus, no knowledge of the complete flow
layout is needed, and the mass pressure balance calculations are made by the components that initiate
the mass flows or that split the flow based on the downstream flow resistances. A few system iterations
are usually required to achieve the correct pressure balance, but the flow configuration and PCS are the
determining factors as to how fast the system converges. An optimized PCS causes a very significant
increase in execution speed, since fewer iterations are required if the components are called in a head-to-
tail sequence. The user may alter the PCS through the use of the SEQUENCE routine in the user opera-
tions blocks. This routine allows the user to specify a group of components in a sequential list as they
are to be called in that relative order. The rest of the PCS is not affected. Of course, the user may
rearrange the whole PCS if necessary by listing all of the components in the case in the desired order.
The user should place the SEQUENCE calls in the OPS1 block if an initial sequence is desired or in the
OPS2 block if time dependent resequencing is desired.

The hydraulic solution system consists of component-level routines that calculate internal com-
ponent pressure losses, as well as system-level routines that perform the interface operations between
the component streams through the flow path connections. The interface routines base their operations
on the stream classification codes discussed in the next section. Two of the routines that perform the
interface operations are COPY and COPYA, which are discussed below.

Subroutine COPY(NUMSTM,CFLAG)

This routine updates stream composition and flow rate (C Array) data to each component. It is
called at the beginning of the 200 block in the component subroutines. Properties (PRO Array)
are also updated for all inlet stream to the given component.

Functions and subroutines referenced:

CONDP CORRECT DPCS FINDC
PROPS

Subroutine COPYA(NUMSTM)

This routine is similar to COPY.

Functions and subroutines referenced:

CORRECT FINDC PROPS

8.1.3 Stream Classifications

The component streams are classified as one of six general types of flow “devices” according to
their mass flow characteristics. There are four general categories of stream types: inlet, outlet, condi-
tional, and stagnant. There are two types of input streams, two types of output streams, and one each of
the conditional and stagnant types:

1. Passive inlet: Indicates that the stream accepts whatever mass flow is passed to it by the
upstream component. An example of this type is the inlet stream of a
filter. Its pressure is determined by adding the pressure drop of that
component’s internal flow path to the corresponding outlet stream
pressure of the same component. Thus, a feedback loop is established
between the inlet stream and its corresponding outlet stream.

2. Active inlet: Indicates that the stream generates a flow rate by pulling mass from the
upstream component. An example of this type is the inlet stream of a

78

pump or fan. Its pressure is set equal to the upstream pressure minus the
pressure drop through the flow connection.

3. Passive outlet: Indicates that the component passes the flow from a passive inlet stream
through to the outlet side with the establishment of a feedback loop
between the inlet side and the outlet side. Therefore, its pressure is set
equal to the downstream component’s inlet pressure plus the pressure drop
through the flow connection. An example of this type is the outlet stream
of a filter.

4. Specified outlet: Indicates that the component contains some type of flow generation device
internal to the component that drives the outlet flow without a direct
relationship to any of the inlet streams. Its pressure may be set to a
constant value to simulate a regulated process, or a feedback loop may be
estabished by passing the PSPEC routine an argument value of zero. In the
latter instance, the pressure will be adjusted to match the downstream flow
configuration. An example of the regulated type is the oxygen outlet
stream of the static feed water electrolysis (SFWE), which relies on a
high-pressure nitrogen source to regulate the reaction chamber pressure.
An example of the feedback type is a component that contains an integral
positive displacement pump.

5. Conditional: Indicates that the stream may either accept flow or pass flow depending on
(1) what is hooked to it or (2) on the pressure balance of the system. The
component routine is responsible for any interface operations or feedback
loop establishment and the calculation of the stream pressure. Examples of
this type are tanks and cabins.

6. Stagnant: Indicates that no flow can occur to or from the stream no matter what the
flow conditions are. This type usually indicates a deactivated component
or perhaps a closed valve.

These stream classifications are contained in the system level data array named HYDRA and
may be changed dynamically during the solution process as conditions dictate by the component rou-
tines. These stream codes are initialized to the component default values at the beginning of the simula-
tion in the routine PINIT. They are checked for compatibility in the CONDP interface routine, that is
responsible for calculating the pressure drops in the flow connections and performing feedback opera-
tions, so that the connections make sense from a hydraulic standpoint. For instance, the connection of
two input streams to each other is an obvious error and a warning message is printed to the display. In
this case, the simulation is continued, but the pressure drop for the flow connection is not calculated and
the pressures are left at their previous values. The user may encounter a situation where dynamic condi-
tions cause a few solution iterations in that the stream codes are incompatible, but that eventually sort
themselves out. However, a repetitive series of the warning messages indicates an erroneous connection
that the solution system cannot resolve.

8.1.4 Friction Losses Through Connections

The pressure drop through each of the flow connections is calculated by the routine FRICTDP,
which is called by the routine CONDP mentioned in the previous section. The FRICTDP routine calcu-
lates the pressure drop based on the assumption of an incompressible fluid flowing through a smooth
circular conduit in the laminar, transitional, and turbulent regimes. The Darcy formula is used in com-
bination with the hydraulic equivalent length and diameter, the fluid density, and the fluid viscosity to
calculate the pressure drop. Note that the dynamic pressure losses due to geometric considerations must
be accounted for by the correct calculation of the equivalent length for the specified equivalent diameter.
These values are stored in the constituent “C” array and are loaded at the beginning of the simulation

79

from the CASENAME.MOD file, that contains the graphical information of the system layout. The user
must specify the equivalent length and diameter when the CoNect command is issued in the buildup of
the system layout (CN;Leq;Deq). The length, Leq, is entered in feet and the diameter, Deq, is entered in
hundredths of an inch (100 = 1 inch). For instance, a connection that is 25-feet long and 6 inches in
diameter should be entered as CN;25;600. Both values must be entered only as integers, since the inter-
nal storage array may contain only integers. If no arguments are included for the CN command, the sys-
tem automatically sets the equivalent length and diameter to their default values of 1 foot and 6 inches,
respectively.

Subroutine CONDP(NEA,NSA,NEB,NSB,NC)

This routine determines the pressure drop between components NEA and NEB connected by
streams NSA and NSB whose connection number is NC.

Functions and subroutines referenced:

DENVIS FRICTDP LOADCOND TEK_ADV

Subroutine FRICTDP(SDEN,SVIS,SXL,SXD,XMDOT,DPX)

This routine calculates the pressure drop, DPX, through a smooth pipe of a diameter, SXD, and
equivalent length, SXL, for a flow with the properties of density = SDEN and viscosity = SVIS
at a rate of XMDOT.

Functions and subroutines referenced: NONE

8.1.5 Pressure Loss Through Components

The component routines are responsible for the calculation of the pressure losses for any internal
flow paths. The system-level routines in turn use these values to establish the feedback loops when
required. The routine PIPEDP is called by most of the components that have simple flow-through fluid
paths. It calls the routine FRICTDP, described in the previous section, with the appropriate equivalent
length and diameter, which are usually contained in the component performance data in the CON array.

The routine COMPDP is called by those components that make specialized pressure drop calcu-
lations, but also need to establish feedback loops with the rest of the system. This routine accepts the
internally calculated pressure drop as an argument and sets the component stream pressures accordingly.
For example, the FILTER routine must adjust the pressure drop across the filter as it gets clogged with
debris, and this calculation is specific only to the filtration process. However, a feedback loop is still
required with the rest of the system to obtain the correct pressure balance. Therefore, the FILTER rou-
tine calculates the pressure drop across the filter element and then calls the COMPDP routine to carry
out the feedback function.

The routines that simulate the components that redirect or split the flow contain specialized logic
to carry out these functions. They are responsible for their own interface operations as well as maintain-
ing the feedback loops. An example of this type is the NODE component routine. It is the most compli-
cated routine from a hydraulic standpoint, since it must determine the flow directions as well as the flow
rates of a variable number of connecting streams. It relies on the connecting stream pressures, connec-
tion flow path resistances, and connecting stream classifications to arrive at the correct flow balance.

The components that have “specified outlet” streams call the routine PSPEC to set their outlet
pressures or establish feedback loops as appropriate. This routine is used for those outlet streams that are
regulated to a set pressure or that correspond to the outlet side of an internal positive displacement flow
device (constant flow rate with variable pressure differential). A nonzero value for the pressure

80

establishes the stream as a regulated pressure stream, while a value of zero establishes a feedback loop
to match the stream’s pressure to the downstream conditions.

Subroutine COMPDP(NSTM,NSI,NSO,DP)

This routine sets the outlet pressure of the stream NSO based on the inlet pressure of stream NSI
and the pressure drop DP.

Functions and subroutines referenced: LOADCOND

Subroutine PIPEDP(NSTM,NSI,NSO,XL,D)

The subroutine, similar to COMPDP, computes the outlet pressure of stream NSO based on the
inlet stream pressure NSI using the equivalent length XL and equivalent diameter D.

Functions and subroutines referenced:

FRICTDP LOADCOND PROPS

Subroutine PSPEC(NSTR,PRESS)

This routine sets the outlet pressure for stream NSTR of component IEQ to its specified value of
PRESS.

Functions and subroutines referenced: NONE

8.2 Thermal Network Solution Routines

The solution methodology used to solve for unknown system temperatures is discussed in section
8.3 of the User’s Manual. Many components use the generic thermal network discussed below.

Subroutine TNETWK(MAX, RELAX, TSTEP, G1, G2, G3, G4, G5, FAE, G7, G8, CAP,QMASS,
QSHEL, TRAD, TCONV, TCOND, TIN, TMI, TOUT, TWAL, TMAS, TSHEL, IC)

This routine solves a generic thermal network discussed in section 8.3 of the User’s Manual and
is used by many of the components for the thermal solutions.

Functions and subroutines referenced: MTH$EXP

Subroutine TNETWK2(MAX, RELAX, TSTEP, G1, G2, G3, G4, G5, FAE, G7, G8, CAP,QMASS,
QSHEL, TRAD, TCONV, TCOND, TIN, TMI, TOUT, TWAL, TMAS, TSHEL, IC)

This routine is the same as TNETWK except the FT term that approximates the mass average
temperature is not used.

Functions and subroutines referenced: MTH$EXP

81

8.3 Mass Transfer

Subroutine MNETWK

MNETWK performs mass transfer network calculations for components modeling a fluid stream
in contact with a sorbent bed (SAWD, MOLSIEV, DEFLOW, etc.) The delta network technique
is used as described in section 8.5 of the User’s Manual.

Functions and subroutines referenced:

BIVAR RBIVAR SUBR SUBR2

8.4 Thermodynamic Properties

Thermodynamic properties, such as enthalpy, specific heat, etc., are calculated for each fluid
stream by the PROPS routine. PROPS is set up for the eight default constituents discussed in section
7.2.2. These properties are stored in the PRO array as discussed in section 7.2.3. Constituents other than
the eight defaults are assumed to have the properties of water unless the PROPS routine is modified to
reflect the new constituent (see section 7.2.2).

Subroutine PROPS(NE,NS,NC)

Calculates the properties of a mixture based on the mass weighted average values of the con-
stituents’ properties at the specified pressure (lb/in2 absolute) and temperature (˚F), given in the
PRO array, and composition (mass fractions contained in the “C” array).

Functions and subroutines referenced:

INTER SATPR TEK_ADV VISC
USERPROPS

Function SATPR(TEMP)

Returns the saturation pressure of air at specified temperature.

Functions and subroutines referenced:

 MTH$ALOG MTH$EXP RINTER

Subroutine VISC(C,W,T0,XMU0,T,XMU)

Used to determine the viscosity of a fluid.

Functions and subroutines referenced: NONE

82

SECTION 9. COMPONENT ROUTINES

CASE/A presently supports 53 components. From the predefined components and the additional
“BLACKBOX” component (OPS7), the user may construct a system to simulate many life support sys-
tem configurations. Additionally, an experienced programmer can develop custom models to add to the
CASE/A component library. Each type of component is associated with a type number, usually referred
to by the variable ITYPE. ITYPE is contained in the third location of the IEL array for each component
in the model (i.e., ITYPE = IEL(IEQ,3)). These type numbers are shown in figure 19.

EDC
1

EDC SABAT
2

SABAT

COMPONENT
TYPE

NUMBERS
(ITYPE)

COMPONENT
TYPE

NUMBERS
(ITYPE)

WQM
3

WQM FILTER
4

FILTER AFSPE
5

AFSPE BOSCH
6

BOSCH VCD
7

VCD TIMES
8

TIMES

SAWD
9

SAWD STORE
1 0

STORE CHX
1 1

CHX H2OSEP
1 2

H2OSEP O2N2
1 3

O2N2 BUBBLE
1 4

BUBBLE LIOH
1 5

LIOH MOLSIEV
1 6

MOLSIEV

SPES
1 7

SPES SFWE
1 8

SFWE RO
1 9
RO SPLIT

2 0
SPLIT RACK

2 1
RACK CFR

2 2
CFR * * *

2 3
* * * COMBUST

2 4
COMBUST

CREW
2 5

CREW CABIN
2 6

CABIN PUMP
2 7

PUMP WASH
2 8

WASH PREWAST
2 9

PREWAST SUM
3 0

SUM BMR
3 1

BMR CP
3 2
CP

TBUS
3 3

TBUS ALHX
3 4

ALHX LLHX
3 5

LLHX CNHX
3 6

CNHX CAP
3 7

CAP MSPLT
3 8

MSPLT HEATER
3 9

HEATER DEHUM
4 0

DEHUM

ADSORPTN
4 1

ADSORPTN IONEXCH
4 2

IONEXCH BLACKBOX
4 3

BLACKBOX RAD
4 4

RAD HATCH
4 5

HATCH * * *
4 6

* * * NODE
4 7

NODE VALVE
4 8

VALVE

EVAP
4 9

EVAP CNTRLLR
5 0

CNTRLLR DEFLOW
5 1

DEFLOW SOURCE
5 2

SOURCE PIPE
5 3

PIPE SINK
5 4

SINK TIMER
5 5

TIMER

*** = Not Supported in Version 5.0 of CASE/A

Figure 19. Component “ITYPES”.

9.1 Component Routine Logic Structure

The CASE/A system presently supports 53 component types from which the user may construct
a life support system model. A subroutine exists for each of these component types that is called from
the SOLVE routine. Several unique components of the same type may be located in a configuration,

83

each with its own operating parameters, but the same subroutine is called for each. All component
subroutines perform four discrete functions at the direction of the SOLVE routine via the system
common block variable MFLAG (fig. 20). These functions correspond to the four segments of the
simulation execution logic. The four functions are discussed below.

COMPONENT
SELECTION
ROUTINE
(EQSOLVE)

COMPONENT
SELECTION
ROUTINE
(EQSOLVE)

COMPONENT
SUBROUTINE
COMPONENT
SUBROUTINE

BRANCH ON
SOLUTION

STAGE FLAG
(MFLAG)

BRANCH ON
SOLUTION

STAGE FLAG
(MFLAG)

MFLAG=1

INITIALIZATION

MFLAG=1

INITIALIZATION

MFLAG=2

ITERATIVE
SOLUTION

MFLAG=2

ITERATIVE
SOLUTION

MFLAG = 3

POST TIME
STEP WRAP

MFLAG = 3

POST TIME
STEP WRAP

MFLAG = 4
POST

SIMULATION
WRAP UP

MFLAG = 4
POST

SIMULATION
WRAP UP

MFLAG = 5

FATAL ERROR
TERMINATION

MFLAG = 5

FATAL ERROR
TERMINATION

RETURN TO
SOLVE

RETURN TO
SOLVE

PROCEDE TO
NEXT

COMPONENT
IN PCS

PROCEDE TO
NEXT

COMPONENT
IN PCS

PROCEEDE TO
NEXT

SOLUTION
STAGE

PROCEEDE TO
NEXT

SOLUTION
STAGE

IEQ=1,NEQ

MFLAG=1,4

Figure 20. Component logic flow diagram.

9.1.1 Initialization Segment

When MFLAG is set equal to one, each component routine performs an initialization function
that loads the component performance data into active memory from mass storage and performs any
other operation required to initialize the component. This segment is executed only once during the
course of the simulation for each component.

9.1.2 Iterative Solution Segment

When MFLAG is set equal to two, each component routine performs the operations associated
with the simulation of that component type’s physical behavior. The mass flow, thermal, and hydraulic
calculations are performed according to the operating characteristics for each component in the case.

Component types can be classified as active or passive devices relative to mass flow considera-
tions. Active devices will generate a flow rate: for example, a PUMP generates flow according to the
rate specified by the user or by its characteristic curve. The mass flow of an active device is usually
specified by the user, but it may be calculated by the routine as a consequence of its internal operation.

84

Passive devices accept the flow from the upstream component and operate appropriately on that mass
flow. The output of a passive device is a function of the input flow plus or minus the internal losses or
redirection of flow. A FILTER component is an example of a passive device. In some instances, a com-
ponent can have a combination of both passive and active behavior. For example, the BOSCH routine,
that simulates the BOSCH carbon dioxide reduction process, accepts concentrated carbon dioxide from
an upstream component that may or may not be mixed with the required quantity of hydrogen. If the
incoming mixture is deficient in hydrogen, the component will attempt to draw the makeup hydrogen
from the component connected to the BOSCH hydrogen makeup stream.

Each component inlet stream “accepts” the flow conditions from the upstream component’s
outlet stream. The component routine performs its calculations based on these inlet flow conditions
existing as fixed boundary values. The component routine then sets the outlet stream conditions
according to the performance parameters and operating characteristics of that particular type of
equipment. A convergence check on the mass flows, temperatures, and pressures of all streams is then
performed and execution control is then returned back to the SOLVE routine. This segment is the main
body of the component logic and is executed several times during the solution of each time interval until
system convergence is obtained.

9.1.3 Posttime-Step Wrap-Up Segment

When the system has obtained convergence for the present time step, MFLAG is set equal to
three and each component routine performs a post time step wrap-up where mass accumulation devices
perform specialized calculations, and benchmark data, if tracked, are updated for all components. This
segment is executed once for each time interval of the simulation.

9.1.4 Postsimulation Wrap-Up Segment

When the simulation has been completed, MFLAG is set equal to four and each component
performs a post simulation wrap-up where the benchmark data are written back to the mass storage file
for that component. This segment is executed only once at the end of the simulation.

9.1.5 Internal Fatal Error Condition

A mechanism for terminating the simulation from within a component routine has been incorpo-
rated into the solution system for those circumstances when a fatal error condition has been generated
within a component routine. This is accomplished by setting the value of MFLAG to five in the compo-
nent routine itself. There are conditional test statements in the SOLVE routine that check for this flag
after each component routine returns control back to SOLVE. The SOLVE routine then returns control
directly back to the main command processor without performing the simulation wrap-up. A description
of the error condition will be written to the display device by the component routine.

9.2 Component Routines

The following is a brief description of each component subroutine including functions and sub-
routines referenced by each. A complete description of the component and its modeling assumptions is
contained in chapter 10 of the User’s Manual.

Subroutine ADSORPTN

This routine is used to simulate the ADSORPTioN units used in water recovery systems.

85

Functions and subroutines referenced:

BENCH COMPDP CONINIT COPY CORRECT
EQWRIT EXP KHECK PASSIVE
QEXCHG TBOUND TEK_ADV TNETWK

Subroutine AFSPE

This routine is used to simulate the process of hydrogen and oxygen generation through the
electrolysis of water by a solid polymer electrolysis unit.

Functions and subroutines referenced:

AFPSATW AFSPEHX BENCH CONINIT
COPY EQWRIT PSPEC SPE1
SPE2

Subroutine BMR

This routine is used to simulate the body mounted radiator.

Functions and subroutines referenced:

BENCH CONINIT COPY EQWRIT
EXP KHECK PASSIVE PIPEDP
TEK_ADV

Subroutine BOSCH

This routine simulates the BOSCH CO2 reduction reactor.

Functions and subroutines referenced:

ALOG BENCH B_CHX CONINIT
COPY DEWPT EQWRIT KHECK
PASSIVE PIPEDP PSPEC SQRT
TEK_ADV

Subroutine CABIN

This subroutine is the primary routine to simulate CABIN module environments.

Functions and subroutines referenced:

BENCH CONINIT COPYA CORRECT
DEWPT DPCS EXP FINDC EQWRIT
KHECKA PROPS SATPR TEK_ADV

Subroutine CAP

This routine simulates the thermal behavior of a phase-change thermal capacitor.

Functions and subroutines referenced:

86

BENCH CONINIT COPY EQWRIT
EXP KHECK PASSIVE PIPEDP
TEK_ADV

Subroutine CFR

This routine is the primary routine used to simulate the carbon formation reactor. Used in con-
junction with a Sabatier CO2 reduction reactor, the carbon formation reactor converts methane
from the Sabatier into solid carbon.

Functions and subroutines referenced:

BENCH CONINIT COPY EQWRIT
FINDC KHECK PASSIVE PIPEDP
PSPEC TEK_ADV

Subroutine CHX

This subroutine is the primary routine used to simulate the condensing heat exchanger. It is
modeled after the condensing heat exchanger used on Spacelab and the shuttle.

Functions and subroutines referenced:

ABS ALOG BENCH CONINIT
COPY DEWPT EQWRIT EXP
KHECK PASSIVE PIPEDP PSPEC SATPR
TEK_ADV

Subroutine CNHX

This subroutine is the primary routine used to simulate the contact heat exchanger.

Functions and subroutines referenced:

ABS BENCH CONINIT COPY EQWRIT
KHECK PASSIVE PIPEDP

Subroutine CNTRLLR

This routine is the driver for simulating the controller component. The controller provides the
user a means of changing system variables without using OPS logic. It is useful for providing
feedback control loops for components and to simulate time varying component performance.

Functions and subroutines referenced:

ABS ACOS ALOG ALOG10
ASIN BENCH CDCODE CONINIT
COS COSH EQWRIT EXP
GETC GETI GETK GETP GETT
POINTCON PULLSTX PUSHSTX SETC SETK
SETP SETT SIN
SINH SQRT TAN TANH TEK_ADV

87

Subroutine CP

This subroutine is the primary routine to simulate a cold plate heat exchanger.

Functions and subroutines referenced:

ABS BENCH CONINIT COPY EQWRIT
KHECK PASSIVE PIPEDP QEXCHG
TBOUND TEK_ADV TNETWK

Subroutine CREW

This is the primary routine used to simulate the metabolic functions such as respiration, perspira-
tion, food and water consumption, heat rejection, and waste production of a crewperson.

Functions and subroutines referenced:

ABS COPY EQWRIT KHECK PSPEC
SCALER TEK_ADV

Subroutine DEFLOW

This is the primary routine for simulating a desicant bed used in the molecular sieve for water
vapor removal.

Functions and subroutines referenced:

ABS BEDLOAD_DEFLOW BENCH CONINIT
COPY DCONV DINTER DMNETWK
DTNETWK2 ETA_DEFLOW EQWRIT GETU
KHECK LOOPWARN_DEFLOW NUM_STEP_DEFLOW PASSIVE
PIPEDP PSPEC SQRT TBOUND
TEK_ADV TIMESTEP WARN_DEFLOW

Subroutine DEHUM

This is the primary routine for simulating water vapor removal of a zeolite or silica gel dehumid-
ifier for the molecular sieve.

Functions and subroutines referenced:

ABS BENCH BIVAR CONINIT
COPY EQWRIT EXP KHECK
PASSIVE PIPEDP PSPEC SCALE
TEK_ADV TSTEP

Subroutine EDC

This is the primary routine used to simulate an electrochemical depolarized CO2 concentrator
(EDC) component. The EDC separates the metabolic carbon dioxide from the inlet air stream for
delivery to a reduction unit such as the Bosch reactor.

88

Functions and subroutines referenced:

ABS BENCH CONINIT COPY DPCS
EQWRIT FINDC KHECK PASSIVE
PIPEDP PSPEC SCALE TEK_ADV

Subroutine EVAP

This is the primary routine used to simulate a flash evaporator for removal of heat from a control
fluid.

Functions and subroutines referenced:

BENCH BIVAR CONINIT CONV
COPY EQWRIT FINDC INTER
KHECK PASSIVE PIPEDP TEK_ADV

Subroutine FILTER

This routine simulates the performance of a porous media filter.

Functions and subroutines referenced:

ABS BENCH COMPDP CONINIT
COPY CORRECT EQWRIT KHECK
PASSIVE QEXCHG TBOUND TEK_ADV
TNETWK

Subroutine H2OSEP

This routine is designed to simulate the H2O separators used on board spacecraft and is modeled
after the Spacelab version used in the Spacelab ECLS models. This component is used to remove
the water from the condensing heat exchanger.

Functions and subroutines referenced:

ABS BENCH CONINIT COPY EQWRIT
KHECK PIPEDP PROPS PSPECSATPR
TEK_ADV

Subroutine HATCH

This is the primary routine to simulate the pressure equalization and air exchange functions of a
hatch connecting two cabins.

Functions and subroutines referenced:

ABS BENCH CONINIT COPYA
DPCS EQWRIT FINDC LOADCOND
PROPS SCALER TEK_ADV

Subroutine HEATER

This routine simulates an ideal heater to elevate the temperature of a fluid stream.

89

Functions and subroutines referenced:

ABS BENCH CONINIT COPY EQWRIT
KHECK PASSIVE PIPEDP TEK_ADV

Subroutine HX

This routine is used by all of the heat exchanger components to simulate two fluid heat
exchanges.

Functions and subroutines referenced:

ABS BENCH CONINIT COPY EQWRIT
EXP KHECK PASSIVE PIPEDP
TEK_ADV

Subroutine IONEXCH

This routine simulates the performance of a cylindrical ion exchange unit.

Functions and subroutines referenced:

ABS BENCH COMPDP CONINIT
COPY CORRECT EQWRIT EXP
KHECK PASSIVE QEXCHG TBOUND
TEK_ADV TNETWK

Subroutine LIOH

This routine simulates a lithium hydroxide (LiOH) cartridge. The LiOH cartridge is used to
remove CO2 from an air stream.

Functions and subroutines referenced:

ABS BENCH CONINIT COPY EQWRIT
EXP KHECK PASSIVE PIPEDP
TBOUND TEK_ADV TNETWK

Subroutine MODULE

Simulates a module that acts as a volume of containment to track atmospheric composition, mass
addition/losses, and heat transfer to/from other modules or the external environment.

Functions and subroutines referenced:

ABS BENCH CONINIT COPYA
CORRECT DCONV DPCS EQWRIT
EXP KHECKA PROPS TEK_ADV

Subroutine MOLSIEV

Simulates a MOLecular SEIVE CO2 adsorption/desorption.

Functions and subroutines referenced:

90

BENCH CONINIT CONV COPY
EQWRIT FLOWSPACE GET_CONTINUUM
ISODAT KHECK MNETWK MOL_ETA
PASSIVE PIPEDP PSPEC RISODAT
SCALE TBOUND TEK_ADV TIMESTEP
TNETWK2

Subroutine MSPLT

Simulates the Multi-SPLiT or SPLiT component.

Functions and subroutines referenced:

BENCH CONINIT COPY DENVIS
DPCS EQWRIT FRICTDP FLOWLEG
KHECK LOADCOND SCALER TEK_ADV

Subroutine NODE

Simulates the NODE component. This routine is located in the file NODE1.FOR.

Functions and subroutines referenced:

COPYA DENVIS DPCS EQWRIT FINDC
FRICTDP KHECKA LOADCOND
PROPS SCALE SCALER TEK_ADV

Subroutine O2N2

Simulates the nitrogen and oxygen partial pressure controllers.

Functions and subroutines referenced:

BENCH CONINIT COPY EQWRIT
FINDC SMVBITS KHECK PSPEC
TEK_ADV

Subroutine OPS7

OPS7 logic blackbox component code.

Functions and subroutines referenced:

COPY FINDC KHECK PDEL
SCALER

Subroutine PIPE

Simulates the PIPE component.

Functions and subroutines referenced:

BENCH COMPDP CONINIT COPY
DPCS EQWRIT FRICTDP KHECK

91

PASSIVE TBOUND TEK_ADV TNETWK
QEXCHG

Subroutine PREWAST

Simulates a WASTE PREtreatment component.

Functions and subroutines referenced:

BENCH CONINIT COPY CORRECT
EQWRIT KHECK PROPS PSPEC
QEXCHG SCALER TBOUND TEK_ADV
TNETWK

Subroutine PUMP

Simulates the PUMP component.

Functions and subroutines referenced:

 BENCH CONINIT CONV COPY
DPCS EQWRIT FINDC KHECK PSPEC
QEXCHG SCALER TBOUND TEK_ADV
TNETWK

Subroutine RACK

Simulates the RACK component.

Functions and subroutines referenced:

 BENCH CONINIT COPY EQWRIT
KHECK MTH$EXP PASSIVE PIPEDP
TEK_ADV

Subroutine RAD

Simulates a RADiator component.

Functions and subroutines referenced:

BENCH CONINIT COPY EQWRIT
KHECK MTH$EXP PASSIVE PIPEDP
TEK_ADV TNETWK

Subroutine RO

Simulate a reverse osmosis component.

Functions and subroutines referenced:

 BENCH COMPDP CONINIT CONV
COPY EQWRIT KHECK MTH$EXP
PASSIVE PROPS PSPEC QEXCHG
TBOUND TEK_ADV TNETWK

92

Subroutine SABAT

Simulates the SABATier component.

Functions and subroutines referenced:

 BENCH CONINIT COPY DEWPT
EQWRIT KHECK MTH$EXP PROPS PSPEC
PROPS QEXCHG SABCHX SABDEL
SABGCAL6 SABH2O SABRAT SCALE
TBOUND TEK_ADV TEMPNET

Subroutine SAWD

Simulates the solid amine water desorb unit.

Functions and subroutines referenced:

 BENCH CONINIT COPY CONV EQWRIT
ISOLCO2 ISOLH2O ISOPCO2 ISOLPH2O
KHECK LOOPWARN MNETWK PASSIVE
PIPEDP PSPEC SAWD_ETA TBOUND
TEK_ADV TNETWK WARN

Subroutine SFWE

Simulates the static feed water electrolysis unit.

Functions and subroutines referenced:

 BENCH BIVAR CONINIT COPY EQWRIT
KHECK PASSIVE PIPEDP PSPECSFWET
TBOUND TEK_ADV

Subroutine SINK

This routine simulates the SINK component.

Functions and subroutines referenced:

BENCH CONINIT COPY EQWRIT
KHECK

Subroutine SOURCE

This subroutine simulates an ideal fluid source, providing downstream components with a con-
stant (or timelined in user OPS logic) input pressure, temperature, flowrate and composition.

 Functions and subroutines referenced:

COPY KHECK PSPEC

Subroutine SUM

Simulates a component that mixes two fluid streams.

93

Functions and subroutines referenced:

COPYA DENVIS DPCS ERRDUMP
EQWRIT FINDC FRICTDP GIMAG
KHECKA LOADCOND PROPS SCALE
SCALER TEK_ADV

Subroutine TANK

Used to simulate the STORE component.

Functions and subroutines referenced:

BENCH CONINIT COPYA DPCS EQWRIT
FINDC KHECKA PROPS QEXCH
TEK_ADV

Subroutine TBUS

Simulates the thermal bus component.

Functions and subroutines referenced:

BENCH CONINIT COPY EQWRIT
KHECK PASSIVE PIPEDP

Subroutine TIMER

This routine simulates the TIMER component.

Functions and subroutines referenced:

POINTCON TEK_ADV

Subroutine TIMESC

Used to simulate a thermally integrated membrane evaporation system (TIMES component).

Functions and subroutines referenced:

 BENCH CONINIT COPY CORRECT
EQWRIT KHECK PSPEC TEK_ADV

Subroutine VALVE

Simulates a VALVE component.

Functions and subroutines referenced:

 BENCH COMPDP CONINIT CONV
COPY DPCS EQWRIT FRICTDP
KHECK LOADCOND PASSIVE POINTCON
QEXCHG TBOUND TEK_ADV TNETWK

94

Subroutine VCD

Simulates a vapor compressed distillation component.

Functions and subroutines referenced:

 BENCH CONINIT COPY CORRECT
EQWRIT KHECK PSPEC TEK_ADV

Subroutine WASH

Used to simulate a WASH component.

Functions and subroutines referenced:

 BENCH COMPDP CONINIT COPY
CORRECT EQWRIT KHECK PASSIVE
PROPS PSPEC QEXCHG SCALER
TBOUND TEK_ADV TNETWK

Subroutine WQM

Used to simulate a water quality monitor component.

Functions and subroutines referenced:

 COPY EQWRIT KHECK PASSIVE
PIPEDP QEXCHG TBOUND TEK_ADV
TNETWK

95

APPENDIX A. PREPARATION OF COMPATIBLE COMPONENT SUBROUTINES

The following sections describe how a user would incorporate a CASE/A compatible component
subroutine that matches the existing program architecture. The process is broken down into three sec-
tions including graphical icon construction, data management initialization, and component routine con-
struction.

1.0 Graphical Component Icon Construction

The CASE/A graphical component icon usually has one, two, or three entering and exiting
streams, but may have more depending on the process at hand. Each entering and exiting stream is num-
bered from one to the total number of streams for the given component, with the entering streams being
numbered first. Integer numbers are used to represent the individual ECLSS components and to specify
their interconnections, order of solution, and the appropriate CASE/A subroutine that is assigned to
simulate their function. Each piece of equipment located by the user will be assigned an arbitrary
equipment number (IEQ) depending on the order of component input. The solution routine solves the
component matrix by taking the component routines in the order of equipment input, with the exception
of certain “flagged” components that are sorted to the beginning of the solution scheme.

Several routines, arrays, and variables must be changed in order to incorporate a new graphical
icon. These routines work together in order to produce the graphics representation on the terminal
screen. The following steps outline the sequence for inserting a new component icon into the existing
data base.

1.1 Step 1: Increase Number of Components

The variable “NCOMP” refers to the active number of components that are readily available for
a given ECLSS simulation. When making an addition to the current library, this variable must be
increased by the number of components that are being added to the CASE/A library. The variable initial-
ization occurs within the main program section of CASEAMAIN.FOR.

1.2 Step 2: Modify “Drawc” Routine

The majority of work involved with the location of a new component icon is contained in the
routine DRAWC. When first entering this routine, the programmer finds a large number of array decla-
rations all of the form “ICOMP(I)”, “JCOMP(J,K)”. The names ICOMP and JCOMP are shortened
names for integer arrays containing data points for the representation of a particular component icon.
For example, the arrays “IMOL” and “JMOL” contain the data points for graphical representation and
rotation data for the MOLSIEV component. The values contained in the “ICOMP” array pertain to the
coordinates of the graphical picture of the new component. The “JCOMP” array contains the coordinates
data for the stream labels and component name.

The following example code in figure A-1 and figure A-2 use the MOLSIEV component to
describe the “ICOMP(I)” and “JCOMP(J,K)” array usage. Note that coordinates referenced are relative
to the center of the icon, unless otherwise noted, and are measured in pixels.

96

DATA IMOL /60, 60, 8, -30, 0, 30, 0, 15, 30, -27, -30/

Data Items: 1, 2 = Height x Width of box (60 x 60 pixels)
 3 = number of remaining elements used in array
4, 5 = (x,y) coordinates of stream 1
6, 7 = (x,y) coordinates of stream 2
8, 9 = (x,y) coordinates of stream 3

 10, 11 = (x,y) coordinates of body hit dot

Note that IMOL is dimensioned to 11

DATA JMOL /-58, 5, 35, 5, -16, 42, -for 0 degrees
 -26, -50, -26, 42, -61, 0, -for 90 degrees

 38, -12, -55, -12, -10,-45, -for 180 degrees
 5, 40, 5, -45, 35, -5/ -for 270 degrees

Figure A-1. Example code for new component in DRAWC routine.

Note that the MOLSIEV component has three stream labels. Therefore,
three data pairs (six items) are required to locate the starting point
of the label for each possible icon orientation (0˚, 90˚, 180˚, or
270˚).

0 10 50 70-10-50-70

0

-10

10

-50

-70

50

70

-30 30

-30

30

MOLSIEV

"equipment name"

AIR AIR X

(0,0)

CO2

Y

3

1

2

x,y coordinates
(-30, -30)

x,y coord.
(30, -30)

x,y coord.
(70, 0)

body hit dot
x,y coord: (-27, -30)

Figure A-2. MOLSIEV icon layout.

97

The next array to modify is NSCODE. This array is dimensioned to NSCODE (65, 8) and con-
tains the stream code for each of the eight possible streams for every component type. Stream codes are
discussed in section 8.2.3 of the user’s manual and section 8.1.3 of this manual. They are summarized
below:

 CODE TYPE
1 Passive inlet
2 Active inlet
3 Passive outlet
4 Specified (active) outlet
5 Accumulator/boundary stream
6 Stagnant stream

Since the MOLSIEV is type 16, its stream codes are stored in NSCODE(16,i), i=1,8. The
MOLSIEV has three streams: stream 1 is a passive inlet, 2 is a passive outlet, and 3 is a specified outlet.
The scream codes are therefore 1, 3, 4, 0, 0, 0, 0, 0. Zeros must be used for non-existent streams. For a
new component, the programmer must specify the stream code of each inlet/outlet stream based on its
function. For example, the MOLSIEV is a simple flow-through device. Air laden with CO2 enters
stream 1 and passes through a sorbent bed and exits stream 2 due to upstream/downstream drivers. Thus,
the inlet and outlet streams are passive. When the bed is in desorb mode, a vacuum pump (internal to the
component) draws flow through stream 3, thus, making stream 3 a specified (or active) outlet. These
code types are default types only and an experienced programmer can develop a code that can change
the stream types dynamically based on operating conditions.

The final modification to the DRAWC routine involves the code responsible for actually drawing
the icon on the terminal screen. As described in section A.1.1, the first new component added to
CASE/A will be component type 56. The DRAWC routine uses a computed GOTO statement to transfer
control to statement label XX00 where XX is the component type number. Therefore, the code for com-
ponent type 56 begins at statement label 5600. The following is a discussion of the MOLSIEV
(ITYPE=16) icon code that begins at statement label 1600. This segment of code is shown in figure A-3.

ASIDE: If the new component icon could be represented by the MOLSIEV, the pro-
grammer could simply copy the block of code starting at label 1600 and ending before
label 1700 to a new section beginning with label 5600.

C
C MOLSIEV
C
 1600 CALL TRANSLT(IX,IY,IROT,IMOL,JAR)
 CALL COLOR(3)
 CALL BLOCK(IMOL(1),IMOL(2),IX,IY,IROT)
C
 CALL BLF(JAR(4),JAR(5), 1,IROT,NSCODE(1,ITYPE))
 CALL BRT(JAR(6),JAR(7),-1,IROT,NSCODE(2,ITYPE))
 CALL BUP(JAR(8),JAR(9),-1,IROT,NSCODE(3,ITYPE))
 CALL CIRCLE(2,JAR(10),JAR(11))
C
 CALL GRLBCT(IX+0,IY+10,IEN(1,ITYPE),8)
 CALL GRLBCT(IX+0,IY-10,NAME,8)
 CALL GRLBAB(IX+JMOL(1,JRO),IY+JMOL(2,JRO),’AIR’,3)
 CALL GRLBAB(IX+JMOL(3,JRO),IY+JMOL(4,JRO),’AIR’,3)
 CALL GRLBAB(IX+JMOL(5,JRO),IY+JMOL(6,JRO),’CO2’,3)
 CALL COLOR(1)
 GO TO 9999

Figure A-3. Example icon graphics code (MOLSIEV icon).

98

An explanation for each line in figure A-2 follows:

Line 1: TRANSLT adjusts the IMOL array based on the screen coordinates (IX, IY) where the
icon is to be drawn. That is, TRANSLT converts the icon coordinate data, which
locates the stream lines, from being relative to the icon center to absolute coordinates
relative to the lower left hand corner of the terminal screen. These new coordinates are
located in the array JAR, which contains the same information in the first three loca-
tions (box height, width and remaining used array locations) as the ICOMP array. The
coordinates (IX, IY) are determined by the user when locating or moving a component
with a cursor pick. The variable IROT is the icon rotation angle in increments of 90˚.

Line 2: This line changes the color of the component. Color is based on the component’s func-
tion (i.e., air revitalization).

Line 3: BLOCK draws the icon box (body) centered at coordinates (IX, IY) and rotated at angle
IROT (must be 0˚, 90˚, 180˚, or 270˚) on the terminal screen. The height and width are
IMOL(1) and IMOL(2), respectively.

Lines 4 to 6: These statements draw the icon streams. BLF draws a line to the left of the box (parallel
to the x-axis) from point (JAR(4), JAR(5)) determined from the relative coordinates
(IMOL(4), IMOL(5)). The parameter “1” indicates that an arrowhead is drawn to point
toward the icon body. NSCODE (1, ITYPE) contains the stream code that directs this
routine to draw the hit box corresponding to that stream type (see section 8.2.3 of the
user’s manual). BRT draws the stream line to the right (parallel to the x-axis) from
(JAR(6), JAR(7)) with an arrow pointing away from the icon body (-1). BUP draws the
third stream up (parallel to the y-axis) and pointing away from the point (JAR(8),
JAR(9)) on the icon.

Line 7: CIRCLE draws the body hit dot, a circle with a diameter of two pixels, at the point
(JAR(10), JAR(11)).

Line 8: GRLBCT draws a graphic label eight characters long centered on the point (IX, IY +
10). The label text is the component type (MOLSIEV) that is stored in IEN(i,TYPE),
i=1,2. For this case, ITYPE is 16.

Line 9: In this line, GRLBCT draws the NAME (component name located in IEL(4) and
IEL(5)) centered about the point (IX, IY - 10).

Line 10 to 12: These lines draw the stream labels at the coordinates in the JMOL array. The variable
JRO indicates rotation angle using values of 1 to 4 for the valid rotation angles (1= 0˚,
2 = 90˚, etc.). JRO is calculated from IROT at the beginning of DRAWC. Note that
JMOL is not adjusted as is IMOL. The rotation angle and absolute coordinates are
included in the CALL statement (Remember that the second index of JMOL indicates
the rotation angle).

Line 13: COLOR is again called to reset the color to the default.

Line 14: Control is transferred to line 9999, which dumps the buffered output and DRAWC is
then exited.

99

1.3 Step 3: Modify “Hit” Routine

Subroutine “HIT” contains the data describing the “hit box” locations for each stream and the
controller circle connection data for each component. The first modification that must be made to this
routine involves the NST array (dimensioned to 65). This array contains the total number of streams
associated with each component. The data are stored by equipment type. For example, the total number
of streams for a PUMP component (type 27) is stored in NST(27) and has the value of 2. The total num-
ber of streams for the first additional component will be located in NST(56).

The next change inside this routine involves the component “hit box” X and Y coordinate values
(refer to figure A-4). The X coordinate values are contained in the IXD array and the Y values are con-
tained in the IYD array. Currently, both the IXD and IYD arrays are dimensioned to (65,8). The index of
65 allows for up to 10 new components to be added. The second index “8” corresponds to the maximum
number of streams a component can have. The values in these arrays are input in the following manner:

The X coordinate of the hit box for stream 2 of component type 23 will be stored in the
IXD(23,-1) location (refer to figure A-4).

The Y coordinate of the hit box for stream 3 of component type 36 will be stored in the
IYD(36,-2) location.

To generalize: x and y coordinates for the HIT BOX of a particular component type, say ITYPE,
are stored in IXD (ITYPE,i) and IYD (ITYPE,i) where i = 1-NST(ITYPE).

To add a new component, the values for IXD (52,1-8) and IYD (52,1-8) must be inserted. Zeroes
are input for the locations where there are no streams (e.g., if the new component has three streams,
locations IXD(52,4-8) and IYD(52,4-8) will have zero values).

C DATA IXD/
C &-15, 15,-15, 15,-70, 70, 0, 0, 0,-15, 15,-70, 70, 0, 0, 0,!EDC,SABAT
.
.
.
C &-15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,!O2N2,BUBBLE
C & 80,-80, 0, 0, 0, 0, 0, 0,-70, 70, 15, 0, 0, 0, 0, 0,!LIOH,MOLSIEV
C & 0,-15, 15,-70, 70, 0, 0, 0,-15,-15, 15,-70, 70, 0, 0, 0,!SPES,SFWE
.
.
.

C DATA IYD/
C & 70, 70,-70,-70,-10, 10, 0, 0, 70,-70,-70,-10, 10, 0, 0, 0,!EDC,SABAT
.
.
.
C & 70, 70,-70, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,!O2N2,BUBBLE
C & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 70, 0, 0, 0, 0, 0,!LIOH,MOLSI*
C & 70,-70,-70, 0, 0, 0, 0, 0, 70,-70,-70, 0, 0, 0, 0, 0,!SPES,SFWE
.
.
.

Figure A-4. Example hit box data initialization (MOLSIEV icon).

100

The last modification to be done to the HIT routine defines the X and Y locations of the body hit
dot (circle). Each component has a two-pixel circle that lies on the outer boundary of the component
icon body. This circle is used to connect the given component to a controller (CNTRLLR) or TIMER.
The two arrays used for the X,Y location of this hit circle are the ICNXD and ICNYD arrays. At the
present time, these are one-dimensional arrays with a maximum number of 65 values. Again, as with
IXD and IYD, the data are stored according to equipment type. For example the value stored in
ICNXD(16) = -27, and ICNYD(16)= -30. Therefore, the body hit dot for the MOLSIEV is located at
(-27, -30) relative to the icon centroid (refer to figure A-4). Note that stream hit dots are handled auto-
matically by the routines that draw the stream line and hit box.

1.4 Step 4: Modify “Locate” Routine

Also located in LOCATE.FOR is the array NANGLE(65), which contains the default orienta-
tions for each component (default IROT). Typically, the default angle is 0˚. If some other orientation is
desired, however, it should be stored in NANGLE according to ITYPE. The MOLSIEV is NANGLE
(16) = 0.

1.5 Step 5: Modify “Ssout” Routine

Subroutine SSOUT contains the stream labels for each component that appears in the .LPP print-
out. The character array (STRLBL) that holds these labels is currently dimensioned to 8 by 65, accom-
modating 65 components with a maximum of eight streams each. STRLBL is a CHARACTER*8 vari-
able, thus, the label name can have a maximum of eight characters. For labels shorter than eight charac-
ters, the array must be padded with blanks. In the MOLSIEV example, the three stream labels are stored
in STRLBL (1-3,16). Locations STRLABL(4-8, 16) are strings of 8 blanks. The DATA statement from
SSOUT.FOR initializing the MOLSIEV is shown in figure A-5 (note that the statement is scarred for ten
additional labels represented by the comment “DUMMY”).

 DATA (STRLBL(i,1),i=1,8)/’AIR IN ‘,’H2 IN ‘,’AIR OUT ‘, !EDC
 & ‘CO2 OUT ‘,’COOL IN ‘,’COOL OUT’,’ ‘,’ ‘/

...

 DATA (STRLBL(i,16),i=1,8)/’AIR IN ‘,’AIR OUT ‘,’CO2 OUT ‘, !MOLSIEV
 & ‘ ‘,’ ‘,’ ‘,’ ‘,’ ‘/

...

 DATA (STRLBL(i,65),i=1,8)/’ ‘,’ ‘,’ ‘, !DUMMY
 & ‘ ‘,’ ‘,’ ‘,’ ‘,’ ‘/

Figure A-5. Example hit stream label declaration (MOLSIEV icon).

1.6 Step 6: Modify “Pinit” Routine

The first modification of PINIT.FOR involves the NSCODE array. These changes are fully
described in section A.1.2. It should be noted that this array is used in DRAWC only as an indicator of
how to draw the hit boxes for a given stream type. In PINIT, the NSCODE array is used to set the values
of the HYDRA array.

The second modification is to the array JSCODE. This array is dimensioned to JSCODE(8, 65),
as is NSCODE. The first index represents the stream number and the second is for component type. The
JSCODE array contains “imposed flow codes” for each of the component’s streams. These flow codes
are:

101

–1 = component stream acts like a sink
 0 = no imposed flow (pass through)
 1 = component stream acts like a source

As an example, the MOLSIEV has three streams: streams 1 and 2 are flow-through and stream 3
delivers CO2 to a device located downstream. From the system level, streams 1 and 2 do not impose
flow (i.e., air enters and exits because of the pressure exerted by upstream and downstream devices).
Stream 3, however, appears to the system to be a source for CO2. Thus, for the MOLSIEV component:

JSCODE (1, 16) = 0
JSCODE (2, 16) = 0
JSCODE (3, 16) = 1

Since the MOLSIEV has only three streams, the remaining values of JSCODE (i, 16) are zero.

The final modification to PINIT when adding a new component is to the array KSCODE. Like
NSCODE and JSCODE, KSCODE is dimensioned to KSCODE (8, 65). This array contains the internal
(to component) connection data. The possible values for KSCODE are shown below:

0 = no direct internal connection to any other component stream
1 to 8 = stream number of opposite end of internal flow path
9 = stream is connected to all other streams (i.e. SPLIT, MSPLIT)

In the MOLSIEV, air enters stream 1, passes through the component, and exits at stream 2.
Therefore, stream 1 has an internal connection to stream 2. Likewise, stream 2 has an internal connec-
tion to stream 1. Stream 3 has no internal connection to another MOLSIEV stream. Thus for the
MOLSIEV component:

KSCODE (1, 16) = 2
KSCODE (2, 16) = 1
KSCODE (3, 16) = 0
KSCODE (4-8, 16) = 0

1.7 Step 7: Modify “Eqsolve” Routine

The subroutine EQSOLVE has the responsibility to call the correct component requested by
SOLVE based on the component type. SOLVE obtains the IEQ number from the NPCS array (see sec-
tion 5.6.1). EQSOLVE is then called. From the IEQ number, the component type is determined from the
IEL array; ITYPE=IEL(IEQ, 3). Based on ITYPE a computed GOTO transfers control to statement label
ITYPE + 10. For example, the MOLSIEV component would cause control to go to label 26, since the
MOLSIEV type is 16. EQSOLVE is scarred for 10 new components at labels 66 through 75 (ITYPE 56
through 65). At each of these statement labels, the CONTINUE statement would simply be replaced by
the statement CALL NEWTYPE, where NEWTYPE would be a component subroutine having the struc-
ture discussed in appendix section 3.0.

1.8 Step 8: Update Case/A Object Library

When code is modified for any reason, the object library must be updated with the new code in
order for all users to access it. The safest way to make changes to CASE/A is to copy the source routines
from the CASEA$CODE directory into a user directory and make the necessary changes to the copy.
When editing of the source is complete, the new routines need to be compiled to create an object file for

102

linking with the CASEA library. As with OPS logic, this is done by invoking the VMS FORTRAN
compiler as follows:

$ FORTRAN/NOOPTIMIZE/DEBUG/CHECK=BOUNDS/CONT=99 filename.FOR

where filename.FOR is the name of the modified routine, EQSOLVE.FOR for example. If no compila-
tion errors occur, the new object code can be linked with the rest of CASE/A with the VMS linker. For
example, if adding a new component NEWCOMP, and having made the required changes to the files as
described above, the LINK statement should be:

$LINK/DEBUG/EXE=CASEA.EXE NEWCOMP, DRAWC, HIT, SSOUT, PINIT,-
EQSOLVE, CASEA$CODE:CASEA, CASEA/LIB

This command causes CASEA.EXE to be created in the current default directory (this should be
a user directory, not CASEA$CODE) from the object files NEWCOMP, DRAWC, HIT, SSOUT,
PINIT, and EQSOLVE in the user directory; CASEA.OBJ and CASEA.OLB (CASE/A object library) in
CASEA$CODE. The linker will use the object code listed first in the link statement, thus abandoning
the old subroutines located in CASEA$CODE:CASEA.OLB (these are not removed, just not linked).
Thus, the library remains intact and costly errors can be avoided.

Since this process is likely to be required several times during the construction of a new compo-
nent, it may be wise to copy CASEA$CODE:LINKCAS.COM into the user directory and modify the
LINK statements contained therein in the above manner. It would then be a simple matter to relink by
the following statement:

$ @LINKCAS or if OPS Logic were involved: $ @LINKCAS OPSFILE

When modifications are complete and thoroughly tested, the CASE/A library is ready to be
updated. It is extremely important to test code modifications rigorously, as the CASE/A library is public
and all users rely upon its integrity. It is a safe practice to retain old versions of code in case errors
should occur when changes are made.

To update the library, copy the new source routines into the CASEA$CODE directory, retaining
the previous versions (default version limits should be greater that 1 for CASEA users). Next, change
default directories to CASEA$CODE:

$SET DEFAULT CASEA$CODE

The command procedure CD.COM is in this directory and is used to compile the source and
replace the objects in the library CASEA.OLB. This is done by entering the command:

$ @CD FILE

at the DCL prompt. “FILE” is one of the new source files and should not include the extension (i.e.,
EQSOLVE not EQSOLVE.FOR). When this is done for each new source file, all users should relink
using LINKCAS (see section 2.1 of the user’s manual).

The final step is to update the library list so that in the event the library needs to be recreated the
new component routine will be updated as well. The files LIB1LIST.COM and LIB4LIST.COM contain
the names of each CASE/A subroutine source file. The new component routine filename (NEWTYPE)
should be added to the end of LIB4LIST.COM. The last two lines are shown below in figure A-6.

103

ELIMINAT, EXCHAN, FIT, GRLBAB, -
INTERSEC, PLTOVR, POINT, RANK, -
SCAN, SCREDT, SELECT, SIGMA, -
SORT, TDPLOT, UNION

Figure A-6. Modified library list (LIB4LIST.COM).

See appendix C of the user’s manual for creating a library using LIBCREATE.

2.0 Data Base Construction

2.1 Data Base File Description

When a new component is created, a new data base must be generated to support that
component. A listing of the files in the data base directories reveals that a data base exists for every
component except for BUBBLE. Also, each data base consists of at least eight files:

NAME.DDF NAME.STT*
NAME.DAT NAME.USR*
NAME.ED1 NAME.SUB*
NAME.ED2
NAME.SCR * - these files are maintenance files automatically created by

the data management system and their function is unimportant to
the CASE/A programmer and beyond the scope of this manual.

2.1.1 Data Definition File

The data definition file (DDF) specifies how the component data (stored in binary form) are
interpreted. A generic DDF is shown in figure A-7. The first 12 entries in every component DDF store
the same type of information. The remaining items are user-specified and define the inputs, outputs, and
benchmarks associated with the component. In the generic DDF, words 16 to 73 are inputs, words 67 to
70 are outputs, and words 116 to 175 are benchmarks. The labels shown (INPUT CONSTANT #1, etc.)
should be modified to indicate the particular parameter of interest (32 characters maximum). The header
line and the three-digit integers preceding each item are described in section 3.4.

2.1.2 Binary Data File

This file (.DAT) contains the actual component data. The data are stored in binary form (note
that this file cannot be printed in the typical ASCII form). The NEWCOMP.DAT file is automatically
updated as components of NEWCOMP type are used in model development. It should be noted that the
data associated with every NEWCOMP component in EVERY model at a given installation site are
stored in this file. If NEWCOMP.DAT is deleted, all NEWCOMP data will be lost. This is true for any
COMPONENT.DAT file.

2.1.3 Full Screen Editor Templates

The .ED1 and .ED2 files store information enabling data from the .DAT file to be read
(according to the .DDF) and presented in a full screen format. The .ED2 file is a text file that contains all
of the parameter labels for a component. These template files are located in the directory with the .DDF
and .DAT files ([CASE.DATA]). This directory is specified by the VMS logical name CASEA$DATA.
The .ED1 file is created by running TDMS and executing the SCREEN command (from within the
[CASEA.DATA] directory. The details of this command may be obtained via the online help utility.

104

81 78 77 15000 78 0 0
002 002 001 CASE NAME
002 002 003 SUBSYSTEM NAME
002 002 005 COMPONENT NAME
003 001 007 NUMBER OF INPUTS
003 001 008 NUMBER OF OUTPUTS
003 001 009 NUMBER OF BENCHMARKS
003 001 010 CDEL LOCATION
003 001 011 TDEL LOCATION
003 001 012 PDEL LOCATION
003 001 013 POWER ,WATTS
003 001 014 WEIGHT ,LBM
003 001 015 VOLUME ,CUBIC FEET
003 001 016 BED FLAG (1-5A,2-EMRC)
003 001 017 ADSORBENT BED WEIGHT ,LBM
003 001 018 HEAT OF ADSORPTION ,BTU/LBM-CO2
003 001 019 BAKEOUT TEMP SET POINT ,DEG-F
003 001 020 BED LOAD CAPACITY INCREASE FACT
003 001 021 OPERATIONAL FLAG(0-ABS, 1-DES)
003 001 022 BED SHELL ENV CNVCTN G,BTU/HR/F
...
003 001 066 **OPEN INPUT**
003 001 067 MAXIMUM CO2 BED LOADING, %
003 001 068 **OPEN INPUT**
003 001 069 TOTAL CO2 REMOVED , LBM
003 001 070 FINAL CO2 BED LOADING , LBM
003 001 071 AIR IN MAX, LBM/HR
003 001 072 AIR IN MIN, LBM/HR
003 001 073 AIR IN NOM, LBM/HR
003 001 074 AIR OUT MAX, LBM/HR
003 001 075 AIR OUT MIN, LBM/HR
003 001 076 AIR OUT NOM, LBM/HR
003 001 077 CO2 OUT MAX, LBM/HR
003 001 078 CO2 OUT MIN, LBM/HR
003 001 079 CO2 OUT NOM, LBM/HR
001 001 080 MOD DATE
002 001 081 SECURITY
$$EX

Figure A-7. Example data definition file (DDF).

2.1.4 Script File

The script file (.SCR) is a text file that is automatically created for every data base. It serves as a
macro file that is executed each time the data base is loaded. This file is useful for output data bases but
should not be used for component data bases.

2.2 Adding/Modifying Component Data Base Files

Adding or modifying the component data base files requires the use of a text editor (such as EDT
on the VAX/VMS) and the TDMS data management tool. The best source for information regarding
TDMS can be obtained from executing TDMS and reviewing the help screens. The following is a brief
list of steps required to add/modify a component data base:

Step 1: If modifying an existing component database, make a backup copy of the original.

Step 2: Update or create the .DDF file using a text editor (such as EDT on VAX/VMS). Refer to TDMS
Data Structures Help menu or section 3.4 of this manual for the formatting conventions.

Step 3: (a) If adding a new component, the .DAT file will be updated as new components are added
under the CASE/A model construction process. To add default settings for the new component,
execute TDMS and use the ENTRY command.

(b) If modifying an existing component, execute the program INSERT as follows:

RUN/NODEBUG CASEA$DATA:INSERT

105

This program will prompt for changes to the .DAT file and insert 0.0 into all records for the new
fields in that component database.

Step 4: Update/Add the .ED2 file using the text editor (e.g. EDT). This screen layout can be changed as
necessary to add or move fields that will be displayed from this component's database. In
addition the .ED2 file must be consistent with the .ED1 file in order for the screen display for
the component to work correctly. Note the row/column positions of the new fields added to the
.ED2 file, so that these can be added to the .ED1 file.

Step 5: (a) If adding a new component, use TDMS command “SCREEN” to position items in the .DDF
file. This will correspondingly update the .ED1 file as items in the .DDF file are positioned.

(b) If modifying an existing component, use the VAX/VMS editor to update the .ED1 file. The
format is described in the TDMS help panel for “SCREEN.”

3.0 Component Fortran Routine

The most important, and perhaps the most difficult, task in creating a new component is creating
the FORTRAN code to model a component. All of the components are unique in nature due to the archi-
tecture of the CASE/A command processor. Each of the subroutines are broken into four discrete sec-
tions, depending upon the state of execution of the solution routine. These sections pertain to the follow-
ing aspects of a systems-level simulation:

 Subroutine Block Execution State

100 Block Called one time at the beginning of the simulation.

200 Block Called every component iteration. Called a maximum of NLOOP
times.

300 Block Called after each successful time step convergence or after a
maximum number of loops have been exceeded.

400 Block Called one time at the end of a simulation.

The general types of operations that are executed in each of these blocks will be discussed in the
following sections. The final section provides a step-by-step description for one of the existing CASE/A
library subroutines. This subroutine is for an ideal heater and is called HEATER. This is one of the
simplest component models in the CASE/A system and will allow the user to get a feel for the general-
ized flow of data into and out of the component.

3.1 Data Initialization Segment (100 Block)

The data initialization segment portion of CASE/A occurs only one time for each component
within a given simulation. The first statement within the 100 block (for components with data files) is
the command CALL CONINIT. This command loads all of the data for that particular component type
from mass storage into random access memory. Other types of operations performed in this block
include initializing the CON array outlet locations to zero, initializing variables that stay constant
throughout the entire simulation, setting the plot array (D array) locations to zero, and setting the appro-
priate operation flags to their initial values.

106

3.2 Iterative Solution Segment (200 Block)

The iterative solution segment performs the operations associated with the simulation of that
component type’s physical behavior. The mass flow, thermal, and hydraulic calculations are performed
according to the operating characteristics for each specific component within a given case. The general
types of operations executed in the 200 block also depend on the type of component, active or passive.
Active components will generate flow according to a rate specified by the user or a characteristic flow
curve. Passive devices accept flow from the upstream component and operate on the control volume
appropriately depending on the temperature, pressure, and composition of the inlet stream.

The iterative segment of a component becomes more complicated if the component in question
requires a transient mass, thermal, or combined response. Transient response routines require the user to
save the initial conditions from the last successful time step convergence into temporary values, and also
update the transient values from iteration to iteration within the component. Often times, the transient
routine will require a smaller time step than the system time step, hence the routine must be “fooled” by
iterating within that component’s 200 block for a number of loops given by the following relation:

Number of iterations inside the 200 block for a routine whose internal time step is calculated to
be 5 seconds and is inside a system whose time step is 60 seconds:

of Loops = (60 S/5 S) = 20

Some of the more detailed transient routines currently available within the CASE/A library are
MOLSIEV, DEFLOW, and DEHUM and SABAT.

Specific requirements must be met in the 200 block of each component routine. The component
pressures, mass flow rates, mass fractions, and specific heats must be passed from the inlet to the outlet
so that the downstream component will have values to operate on if an error condition is reached. This is
usually done near the beginning of the block . The next portion of the 200 block contains the inputs that
are read from the CON array. These values are likely to change with time, hence the user can change
these through operations logic. This section varies in size depending on the complexity of the process at
hand. The actual “iterative” portion of the 200 block is usually based on a mass or temperature relation-
ship. In other words, the iterative portion of the block is executed until some user input relaxation
involving a temperature or constituent mass fraction is met. This section also varies greatly in size de-
pending on the nature of the process. The final portion of the 200 block contains operations that are
similar for all components. The cabin heat load and conductor (CLOAD and GSUM) arrays are updated
based on the final component temperature, outlet stream mass fractions and flow rates are set, and the
stream outlet pressures are calculated depending upon the user’s preference for calculation type (see
section 8 of the user’s and programmer’s manual).

3.3 Post-time Step Wrap-Up Segment (300 Block)

The post-time step wrap-up segment of each component routine is called one time per successful
system time step (at the end of the time step). The CON array output locations are updated at this time
along with any benchmark parameters that tracked on a per time step basis. If the component in question
has an internal accumulation stream, it must be updated within the 300 block also. The 300 block varies
in size depending on the number of output and benchmark locations that are reserved by the new com-
ponent.

3.4 Postsimulation Wrap-Up Segment (400 Block)

The post simulation wrap-up segment of the code is executed one time per simulation (at the
simulation end). The structure of the 400 block is very similar for every component. The data updated in

107

this section include the benchmark parameters. Note that the call to the routine EQWRIT is no longer
used in the current version.

3.5 Example Component Subroutine – Heater

Figure A-8 shows example source code for an ideal heater. It is documented so that the general
logic of a component subroutine can be determined. The programmer is encouraged to investigate the
other component subroutines in CASEA$CODE to obtain a better understanding of each model.

MINS2>type heater.for /page
C *** DEC/CMS REPLACEMENT HISTORY, Element HEATER.FOR
C *** *2 2-OCT-1990 15:34:41 ANDERDE “this is the cosmic (version

 4.1) version”
C *** *1 6-SEP-1990 08:58:55 ANDERDE “Initial element creation from
 user4$:[ed62.casea4.code]”

C *** DEC/CMS REPLACEMENT HISTORY, Element HEATER.FOR
 SUBROUTINE HEATER
C
C COMPCOM.INC CONTAINS COMMON BLOCKS OF ALL CASE/A ARRAYS
C NECESSARY FOR COMPONENT OPERATIONS.
C
 INCLUDE ‘compcom.inc’
 INCLUDE ‘com_io.inc’
C
C COMPUTED GOTO DEPENDING ON SOLUTION SEGMENT
C
 GO TO (100,200,300,400) MFLAG
C***
C
C INITIALIZE “CON” ARRAY BENCHMARK LOCATIONS
C
 100 CALL CONINIT
C
C RESERVE D(IEQ,11) AS FLAG THAT INDICATES
C IF HEATER IS ON (0) OR OFF (1.0) FOR
C CUMMULATIVE OPERATING TIME CALCULATION
C PERFORMED IN “300” BLOCK
C
 D(IEQ,11) = 0
 CON(NOUT+2) = 0 ! INITIALIZE OUTPUT
 GOTO 499
C***
C
C COPY UPDATES INLET STREAMS’ PROPERTIES AND FLOW RATES, AND PREPARES
C “ACTIVE SET” FOR CONVERGENCE CHECKS IN SUBROUTINE KHECK.
C
 200 CALL COPY(2)
C
C PASSIVE CHECKS FOR PULL THROUGH FLOW IN COMPONENTS WITH PASSIVE
C INLET/OUTLET STREAMS
C
 CALL PASSIVE(2,1,2)
 D(IEQ,11) = 0
 IF (CFLAG) GOTO 499

Figure A-8. Example source code for an ideal heater component.

108

C
C
C PASS FLOW RATE AND COMPOSITIONS FROM INLET TO OUTLET AS A SAFETY
MEASURE.
C
 DO 210 I = 1,NTRACK
 210 C(I,npt2) = ABS(C(I,npt1))
C
C
C PASS TEMPERATURE TO STREAM 2
C
 PRO(2,IEQ,2) = PRO(2,IEQ,1)
C
C DEFINE PERTINENT LOCAL VARIABLES
C
 FLOW = ABS(C(1,npt1))
 CP = PRO(3,IEQ,1)
 TIN = PRO(2,IEQ,1)
 TNEED = CON(NINP+1)
C
 IF (TIN .GT. TNEED) THEN
 D(IEQ,11) = 1.0
 QNEED = 0
 TNEED = TIN
 ELSE
 QNEED = FLOW * CP * (TNEED-TIN)
 ENDIF
C
 CON(NOUT+1) = QNEED
C
C SET OUTLET TEMPERATURE
C
 PRO(2,IEQ,2) = TNEED
C
 298 CONTINUE
C
C THIS ROUTINE CALCULATES THE PRESSURE DROP THROUGH THE INTERNAL
C CONNECTIONS OF A PASSIVE, FLOW THROUGH DEVICE BASED ON A USER SUPPLIED
C EQUIVALENT LENGTH AND DIAMETER (NOTE THAT DIA MUST BE CONVERTED TO
FEET).
C
 CALL PIPEDP(2,1,2,CON(NINP+2),CON(NINP+3)/12.0)
C
C CALL ROUTINE TO CHECK CONVERGE AT A SYSTEM LEVEL (FROM THE ACTIVE SET
C ESTABLISHED IN Subroutine COPY).
C
 299 CALL KHECK(2)
 GOTO 499
C***
C
C SAVE DESIRED VALUES FOR BENCHMARK CALCULATIONS
C NOTE THAT BENCHMARKS WORK IN “THREES”, I.E., MAX,MIN, AND NOM.
C THE ROUTINE BENCH ASSUMES THAT IF BENCHMARK 1 IS SPECIFIED, THEN
C BENCHMARKS 2 AND 3 MUST ALSO BE UPDATED.
C

Figure A-8. Example source code for an ideal heater component (continued).

109

 300 CALL BENCH(1,ABS(C(1,npt1)))
 CALL BENCH(4,PRO(2,IEQ,1))
 CALL BENCH(7,CON(NOUT+1))
 IF (D(IEQ,11) .EQ. 0) THEN
 CON(NOUT+2) = CON(NOUT+2) + STEP
 ELSE
 write(iuo,*)
 CALL TEK_ADV(1)
 write(iuo,*)’HEATER WARNING: INLET TEMP > DESIRED OUTLET TEMP.’
 CALL TEK_ADV(1)
 WRITE (6,310) (IEL(IEQ,K),K=4,5),IEQ
 310 FORMAT(1X,’EQUIP NAME: ‘,2A4,’ EQUIP IEQ: ‘,I5)
 CALL TEK_ADV(1)
 write(iuo,*)’NO HEATER POWER APPLIED: CONTINUING SIMULATION...’
 CALL TEK_ADV(1)
 ENDIF
 GOTO 499
C***
C
C CALCULATE NOMINAL VALUES OF BENCHMARKS (3RD VALUE).
C
 400 IF (TIME .NE. STRT) THEN
 CON(NBEN+3) = CON(NBEN+3) / (TIME-STRT)
 CON(NBEN+6) = CON(NBEN+6) / (TIME-STRT)
 ENDIF
C
 IF (CON(NOUT+2) .NE. 0) THEN
 CON(NBEN+9) = CON(NBEN+9) / CON(NOUT+2)
 ENDIF
C
C
C NULL CALL, THIS ROUTINE IS NO LONGER USED.
C
 CALL EQWRIT
 499 RETURN
 END
C

Figure A-8. Example source code for an ideal heater component (continued).

110

111

 APPENDIX B. GLOSSARY OF LABELED COMMON BLOCK VARIABLES

The following table provides the definition of all major variables that are in common blocks. It
describes the function of the variable and what is represented by each index. These common blocks are
located in the following “INCLUDE” files:

COMPCOM.INC denoted as “C”
FRAMECOM.INC denoted as “F”
GRAPHCOM.INC denoted as “G”
COM_IO.INC denoted as “I”
SOLVCOM.INC denoted as “S”
UTILCOM.INC denoted as “U”

Also “P” denotes common block used for plot functions that is declated directly in subroutines where
referenced.

These files are located in the CASEA$CODE directory.

VARIABLE DATA
TYPE

COMMON
BLOCK
NAME

INCLUDE
FILE

DESCRIPTION

AFLNAM CHAR*80 /ARCHIVE/ G Contains archive file name for model to be
archived. Used in the ARCHIVE routine.

ARCH_DIR CHAR*40 /IO_UNITS/ I Contains directory name for the directory
containing archive files. Used in the
ARCHIVE routine.

ARCHSET_NA
ME

CHAR*8 /ARCHIVE/ G Contains archive set name for model to be
archived. Used in the ARCHIVE routine.

C(54,2000) REAL*4 /CPRO/ C,G,S,U Stream constituent array. See section
7.2.2.

CFLAG LOGICAL*
4

/CON/ C,G,S,U When CFLAG is TRUE the 200 block of
components whose input/output arrays
have not changed since the last iteration is
skipped.

CLOAD(25,3) REAL*4 /CABIN/ C,U Sum of component heat transfer from
components in an assigned subsystem.
The first index is the relative cabin
number. The second is for convection,
radiation, and conduction respectively.

CON(75000) REAL*4 /CON/ C,G,S,U Component data array. See section 7.2.1.
CONFLAG REAL*4 /CON/ C,G,S,U CONFLAG is used by the controller for

various “ACTIVATION CODES”
CONFLAG can be between 0 and 9. See
CNTRLLR component in chapter 10 of
the user’s manual.

CRAD(25) REAL*4 /CABIN/ C,U Effective radiation temperature in cabin
environment.

CSPLIT(250,9) REAL*4 /MSPLIT/ G The first index of CSPLIT is the relative
number of the split component and the
second is 1=number of split legs, 2-9 =
split fraction for each leg.

CSTR(25) REAL*4 /CABIN/ C,U Structure temperature.
CTEMP(25) REAL*4 /CABIN/ C,U Internal cabin temperature.

112

D(1000,50) REAL*4 /PLOT/ C,G D gives 50 internal storage location for
1000 components. This is internal and
unique to each component. The 50
locations should be initialized in the
components 100 block. This is so that
when changes are made or new
components added, the common.inc files
will not need changing.

DEVICE CHARACT
ER*12

/DEV/ C,G,S,U VMS logical disk name (i.e. DISK$2).

DIRECTORY CHARACT
ER*20

/DEV/ C,G,S,U VMS directory (i.e. ECLS.CASEA).

DIRNAME CHARACT
ER*80

/DEV/ C,G,S,U Concatenation of the above to form a
complete directory path (i.e.
HSV::DISK$2:[ECLS.CODE]).

END REAL*4 /EXQ/ C,F,G,S,U Simulation termination time in hours.
ERRFLAG(100
0,3)

LOGICAL*
4

/ERRFLG/ C A conditional flag used by the H2OSEP
component.

FLOCOND(200
0,5)

REAL*4 /PRESSURE
/

C,G,S,U This array contains the conductor data for
each flow conductor. The first index is the
conductor number, the second is: Node A
number, Node B number, mass flow rate,
pressure drop, and C array pointer for
values of 1, 2, 3, 4, and 5.

GSUM(25,3) REAL*4 /CABIN/ C,U Sum of conductance values from assigned
subsystem components to assigned cabin.
First index is relative cabin number,
second index is convection, radiation, and
conduction, respectively.

HOST CHARACT
ER*32

/DEV/ C,G,S,U VMS network host name (i.e. HSV).

HYDRA(2,1000
,8)

REAL*4 /CPRO/ C,G,S,U The Hydra array is used to determine the
pressure solution code for a given stream.
The code indicated hydraulic
characteristics of the stream. The first
index indicates the hydraulic code
number. The second indicates the relative
component location. The third is the
stream number of that component.

IABORT INTEGER*4 /ARCHIVE/ G Flag used to indicate selection by user to
exit routine. Used in RETRIEVE,
MERGE_IN and MERGE_OUT.

IARCHIVE INTEGER*4 /ARCHIVE/ G Switch set to indicate to MERGE_OUT
that ARCHIVE routine is calling it.

IAUTOPLOT INTEGER*4 /ARCHIVE/ G Set to indicate ploting is complete. Used
in AUTOPLOT and OPENDB_X.

IBBLAB(25,8) INTEGER*4 /BBOX/ G,S Black box label array. The first index is
the relative black box number. The second
index is a 4 character label for each of the
eight possible streams.

113

ICL(2000,20) INTEGER*4 /CONSUME
/

C,F,G,S,U ICL is the connection data array. The first
index is the connection number. The
second index is as follows:
 INDEX DATA
1 IEQ of “A” side component
2 Stream # of “A” side component
3 IEQ of “B” side component
4 Stream # of “B” side component
5 Unused
6 Number of segments
7-16 (x,y) coordinates of midpoints
17 Equivalent length
18 Equivalent diameter
19-20 Unused

ICNXD(65) INTEGER*4 /STRM/ G,S X location of body hit circle relative to
icon center. Index is component TYPE
number.

ICNYD(65) INTEGER*4 /STRM/ G,S Y location of body hot circle relative to
icon center. Index is component TYPE
number.

ICP(1000) INTEGER*4 /POINT/ C,S,U Contains the pointer to the start of each
segment of the CON array. (ICP(IEQ)).
See Section 7.2.1.

ICS(2) INTEGER*4 /CONSUME
/

C,F,G,S,U Current casename. ICS(1) is the first 4
characters, ICS(2) is the second 4
characters.

IEL(1000,15) INTEGER*4 /IEL/ C,F,G,S,U IEL is used to store system and graphic
data for each component. The first index is
the relative equipment number (IEQ), the
second is :

 INDEX DATA
1-2 subsystem name
3 component type
4-5 component name
6 x location on subsystem screen
7 y location on subsystem screen
8-11 unused
12 cabin assignment data
13 record number in data base
14-15 unused

IEN(2,65) INTEGER*4 /CONSUME
/

C,F,G,S,U This is the list of CASE/A component
names. For values of the first index of 1
and 2 IEN holds the first 4 or last 4
characters of the name. The second index
is the component TYPE (ITYPE) as
discussed in chapter 10.

IEQ INTEGER*4 /EXQ/ C,F,G,S,U The relative equipment number of the
component currently being considered.
IEQ is advanced in SOLVE according to
the PCS.

IFRAMEFLAG INTEGER*4 /KSCREEN_
LOC/

C,F,G,S,U Used by TEK_ADV to determine wether
to erase the screen.

114

ILB(150,10) INTEGER*4 /CONSUME
/

C,F,G,S,U LABEL data array. The first index is the
label number. The second is:

 INDEX DATA
1-2 subsystem name
3 stream number
4 location in target array
5-6 label text
7 target array 1=c,2=pro,3=con
8 x location
9 y location
10 IEQ number

See the LABELS command in the user’s
manual.

INOTE(26,150) INTEGER*4 /CONSUME
/

C,F,G,S,U NOTE data array. The first index contains:

 INDEX DATA
1-2 subsystem name
3 justification code
4 text size
5-24 text
25 x-location
26 y-location

The second index is the note number.
IPCS(2000,2) INTEGER*4 /IEL/ C,F,G,S,U Used to store PCS data.
IPLT(20,300,4) INTEGER*4 /PLTSET/ P Plot item code array. First index is plotset

number NSET, second is item number
(LITEM), the last corresponds to IEQ,
Array code, location in array, stream
number. The array codes are 1=CON,
2=C, 3=PRO, 4=USERCON, 5=D.

IPREC(20) INTEGER*4 /PLTSET/ P Record number of the plotset in the parent
data base.

IPSNAME(20,2) INTEGER*4 /PLTSET/ P PLOTSET name. First index is plotset
number (NSET) second is name stored in
two four-byte integers.

IPSTIT(300,8) INTEGER*4 /PLTSET/ P Title associated with item to be plotted.
Title is eight four-byte integers for a total
of 32 characters.

IPTFLG INTEGER*4 /EXQ/ C,F,G,S,U If flag is set false, then pressure and
temperature convergence will not be
considered.

ISS(2) INTEGER*4 /CONSUME
/

C,F,G,S,U Subsystem name for the current subsystem
ISS(1) is the first four characters, ISS(2) is
the second four characters.

IUI INTEGER*4 /IO_UNITS/ I Contains unit number from which input is
read. Used throughout CASE/A code.

IUNIT INTEGER*4 /IO_UNITS/ I Contains unit number for additional input
device.

IUNLOCK INTEGER*4 /IO_UNITS/ I Contains value designating that a file is
unlocked. 1- locked, 0-unlocked.

IUO INTEGER*4 /IO_UNITS/ I Contains unit number to which output is
written. Used throughout CASE/A code.

115

IXD(8,65) INTEGER*4 /STRM/ G,S X location of hit box relative to icon
center. First index is stream number ,
second is component TYPE number.

IYD(8,65) INTEGER*4 /STRM/ G,S Y location of hit box relative to icon
center First index is stream number ,
second is component TYPE number.

JCL(2000,4) INTEGER*4 /IEL/ C,F,G,S,U JCL is the same as ICL except the second
index contains only IEQ and stream
numbers in the same order as ICL.

JCON INTEGER*4 /POINT/ C,S,U A pointer to the con array used during
loading of data.

KOUNT(20) INTEGER*4 /PLTSET/ P Number of items to be plotted in each
plotset (300 max).

KSCREEN_XIN
C

INTEGER*4 /KSCREEN_
LOC/

C,F,G,S,U Number of pixels to move the cursor.

KSCREEN_XL
OC

INTEGER*4 /KSCREEN_
LOC/

C,F,G,S,U Current X location of the cursor on a
Tektronix™ terminal in pixels from the
lower left corner.

KSCREEN_XM
AX

INTEGER*4 /KSCREEN_
LOC/

C,F,G,S,U Width of the screen.

KSCREEN_XM
IN

INTEGER*4 /KSCREEN_
LOC/

C,F,G,S,U Left edge of the screen.

KSCREEN_YIN
C

INTEGER*4 /KSCREEN_
LOC/

C,F,G,S,U Number of pixels to move the cursor.

KSCREEN_YL
OC

INTEGER*4 /KSCREEN_
LOC/

C,F,G,S,U Current Y location of the cursor on a
Tektronix™ terminal in pixels from the
lower left corner.

KSCREEN_YM
AX

INTEGER*4 /KSCREEN_
LOC/

C,F,G,S,U Height of the screen.

KSCREEN_YM
IN

INTEGER*4 /KSCREEN_
LOC/

C,F,G,S,U Bottom of the screen.

LBEN INTEGER*4 /POINT/ C,S,U Number of benchmark data (see section
7.2.1).

LCPU(4) INTEGER*4 /IEL/ C,F,G,S,U LPCU contains the record number for the
labels, control, plot, and usercon data
bases in the Master data base.

LFXD INTEGER*4 /POINT/ C,S,U Length of fixed data. Always 9 (see
section 7.2.1).

LINP INTEGER*4 /POINT/ C,S,U Number of input data (see section 7.2.1).
LITEM INTEGER*4 /PLTSET/ * Item to be plotted for a particular

PLOTSET.
LOUT INTEGER*4 /POINT/ C,S,U Number of output data (see section 7.2.1).
LPCS INTEGER*4 /EXQ/ S,G,F,C,U Used with the map data to step through the

PCS.
LTITLE(150) INTEGER*4 /LABELS/ C,S,U The constituent labels contained in the

LABELS data base are stored in this array.
Each label occupies three elements of this
array. For example CO2 is:
 LTITLE(10)=‘CARB’
 LTITLE(11)=‘ON D’
 LTITLE(12)=‘IOX ‘

116

MACTFLAG(20
)

INTEGER*4 /PLTSET/ * Stores a number for the relative PLOTSET
which equates to the OPS Logic segment
during which that set is active. For
example MACTFLAG(1) = 0 indicates
relative plotset number 1 is inactive.
MACTFLAG(3) = 4 indicates PLOTSET
4 is active during OPS4. OPS4 is the
default.

MATRXFLG INTEGER*4 /PRESSURE
/

C,G,S,U Indicates wether matrix solution or
feedback solution is desired.

MFLAG INTEGER*4 /EXQ/ C,F,G,S,U Flag to determine code block of
component routine to execute.

NACT INTEGER*4 /SORT/ C,G,S,U The number of active components in a
case. (All components minus bubbles).

NBEN INTEGER*4 /POINT/ C,S,U Con array pointer to benchmark data (see
section 7.2.1).

NBOX(25,3) INTEGER*4 /BBOX/ G,S The first index is the relative black box
number. The second index determines the
number of input streams, number of output
streams, and relative component number
for index values of 1, 2, and 3,
respectively.

NCAB INTEGER*4 /CABIN/ C,U Relative cabin number.
NCOMP INTEGER*4 /EXQ/ C,F,G,S,U Number of component types.
NCON INTEGER*4 /EXQ/ S,G,F,C,U Number of connection streams in a case.
NEQ INTEGER*4 /EXQ/ C,F,G,S,U Number of components in the case. Not to

be confused with NACT.
NFXD INTEGER*4 /POINT/ C,S,U Con array pointer to first data location (see

section 7.2.1).
NINP INTEGER*4 /POINT/ C,S,U Con array pointer to input data (see

section 7.2.1).
NLAB INTEGER*4 /CONSUME

/
C,F,G,S,U Total number of LABELS for the case.

NLPCS(2000) INTEGER*4 /SORT/ C,G,S,U Stores the values of LPCS by component
number (IEQ).

NNOTE INTEGER*4 /CONSUME
/

C,F,G,S,U Total number of notes in a case.

NODEINFO(10
00,3)

INTEGER*4 /PRESSURE
/

C,G,S,U Used for the pressure drop solution, the
first index contains the node number for a
1000 nodes, the second contains relative
equipment number, stream number, and C
array pointer (NCPT) for values of 1, 2,
and 3, respectively.

NODENO(3,100
0,8)

INTEGER*4 /PRESSURE
/

C,G,S,U Used for the pressure drop solution,
NODENO(i,IEQ,ISTR) contains the node
number, imposed flow code, and C pointer
(NCPT) for i=1,2 and 3. for each
equipment (IEQ) and stream(ISTR).

NOUT INTEGER*4 /POINT/ C,S,U Con array pointer to output data (see
section 7.2.1)

NPCONDS INTEGER*4 /PRESSURE
/

C,G,S,U Number of conductors in the solution.

NPNODES INTEGER*4 /PRESSURE
/

C,G,S,U Number of pressure nodes in the solution.

117

NPT(8) REAL*4 /CPRO/ C,G,S,U NPT(ISTR) points to one of the 1500 C
array locations for a particular stream
number (ISTR) of a component.

NROT(1000) INTEGER*4 /ROTATE/ G Rotation angle of component from default
in degrees. Must be in increments of 90˚.

NSEQ(2000) INTEGER*4 /SORT/ C,G,S,U Component IEQ numbers in the order of
the PCS.

NSET INTEGER*4 /PLTSET/ * Relative PLOTSET number.
NSORT(2000) INTEGER*4 /SORT/ C,G,S,U Used in SORTIEQ to sort the relative

equipment numbers and determine the
pseudo compute sequence.

NSSCAB(5,100) INTEGER*4 /ASSIGN/ F,G,S,U The first index contains the subsystem
name for i=i,2; cabin name for i=3,4 and
the cabin relative component number
(relative to other assigned cabins) for i=5.
The second index is for up to 100 assigned
subsystems.

NST(65) INTEGER*4 /STRM/ G,S Number of “external” streams for each
component. Index is component TYPE
number.

NSYSLOOP INTEGER*4 /EXQ/ C,F,G,S,U Number of iterations at the current time
step.

NTRACK INTEGER*4 /EXQ/ C,F,G,S,U Number of constituents tracked.
NUM_ARCHIV
ED_PLOTSET

INTEGER*4 /ARCHIVE/ G Number of plotsets stored in the current
archive file selected. Used in ARCHIVE,
MERGE_IN, MERGE_OUT, and
RETRIEVE.

NUMBOX INTEGER*4 /BBOX/ G,S Number of black boxes (25 maximum).
NUMCAB INTEGER*4 /ASSIGN/ F,G,S,U Number of cabins to which subsystems

have been assigned.
NUMSP INTEGER*4 /MSPLIT/ G The total number of MSPLTS.
NUMSS INTEGER*4 /ASSIGN/ F,G,S,U Number of subsystems assigned to a

cabin.
NUMTYPE(65) INTEGER*4 /IEL/ C,F,G,S,U Contains the number of each type of

equipment NUMTYPE(ITYPE).
PINITIAL REAL*4 /PRESSURE

/
C,G,S,U Initial guess at pressures which are

undefined by the user.

PLOTSET_ARC
HIVED

CHAR*8 /ARCHIVE/ G Contains name of plotset in archive. Used
in ARCHIVE, MERGE_IN,
MERGE_OUT, RETRIEVE.

PRO(12,100,8) REAL*4 /CPRO/ C,G,S,U Stream properties array (see section 7.2.3).
RDPLUS LOGICAL*

4
/GRAPHLO
G/

U When RDPLUS is false, the ReDraw
command does not write the labels to the
screen. RDPLUS is true if the command is
RD+, otherwise it is false.

RELAXX(1000,
8,4)

REAL*4 /CON/ C,G,U,S Storage for the relaxation values at the
current iteration. Referenced as
RELAXX(IEQ,NSTR,I) where IEQ is the
relative equipment number; NSTR is the
stream for that component. For values of I
= 1, 2 ,3 and 4 respectively, I is relaxation
value for mass flow rate (total or
constituent), temperature, pressure, and
the constituent number which had highest
relaxation value for flow rate.

118

RELX REAL*4 /EXQ/ C,F,G,S,U The relaxation criteria which must be
achieved prior to time incrementation.

RXCC REAL*4 /EXQ/ C,F,G,S,U Maximum change in percent change in
relaxation values for all streams.

STEP REAL*4 /EXQ/ C,F,G,S,U Time step interval in hours.
STRT REAL*4 /EXQ/ C,F,G,S,U Simulation start time in hours.
SYSDAMP REAL*4 /EXQ/ C,F,G,S,U A Damping factor used by some hydraulic

routines.
TDMS_FLAG LOGICAL*

4
/TDMS_FL
AGS/

G A flag to tell when IPU commands are in
effect. This flag toggles some commands
so that they only work when it is set.
Others, such as solve, do not work when it
is TRUE. TDMS_FLG is set to TRUE
when the IPU command is issued.

TERMTYPE REAL*4 /DEV/ C,G,S,U Unused
TIME REAL*4 /EXQ/ C,F,G,S,U Current time in hours.
USERCON(100) REAL*4 /USERCON/ C,G,S,U An array for storing data specific to a

user’s model (see section 7.2.4).

In addition to the above, the file CASE$CODE:SMMARY.INC contains the following variables
which are output as results in the .LPP file. The SUMMARY common block is used to develop the
consumables summary data at the completion of a simulation.

 COMMON/SUMMRY/CREW1(25),XMETAO2(25),XMETACO2(25),DRINK1(25),
 & URIN1(25),
 & XLEAKN2(25),XLEAKO2(25),O2GENH2O(25),O2GENH2(25),O2GENO2(25),
 & EDCH2(25),CO2REMO2(25),EDCO2(25),CO2REMH2(25),CO2REM(25),
 & CO2RMWAT(25),CO2RMH2O(25),CO2REDH2(25),CO2RDH2O(25),
 & CO2RDCH4(25),CO2RED(25),BOSCHH2(25),CO2REDC(25),WASHH2O(25),
 & WASHLOAD(25),FLUSH1(25),URINMIX(25),COND(25),STMASS(1000),
 & XMASS1(1000),DMASS(1000)

CREW1 Number of crew members
XMETAO2Metabolic O2 requirement
XMETACO2 Metabolic CO2 produced
DRINK1 Metabolic Water requirement
URIN1 Urine Production
XLEAKN2N2 leakage
XLEAKO2O2 leakage
O2GENH2O Electrolysis water consumption
O2GENH2Electrolysis hydrogen production
O2GENO2Electrolysis oxygen production
EDCH2 EDC hydrogen consumption
CO2REMO2 total O2 consumed by CO2 removal process
EDCO2;EDC oxygen consumption
CO2REMH2 total H2 consumed by CO2 removal process
CO2REM total CO2 removed by CO2 removal process
CO2RMWAT SAWD water consumption
CO2RMH2O total H2O produced by CO2 removal processes
CO2REDH2 total H2 consumed by CO2 reduction processes
CO2RDH2O total H2O produced by CO2 reduction processes
CO2RDCH4 total CH4 produced by CO2 reduction processes
CO2RED total CO2 reduced by CO2 reduction processes
BOSCHH2BOSCH H2 consumption
CO2REDCBOSCH solid carbon produced
WASHH2OWASH H2O consumption
WASHLOAD WASH latent H2O load
FLUSH1 PREWAST H2O consumption
URINMIXPREWAST total mixture output
COND condensate

119

STMASS initial STORE mass
XMASS1 final STORE mass
DMASS change in STORE mass

120

APPENDIX C. THE MODEL (.MOD) FILE

All information necessary to create the subsystem screens is contained in the MOD file. Since
this file contains graphical information, it is highly recommended that this file not be modified through
means other than CASE/A (i.e. using the VAX editor). The MOD file is strictly formatted and contains a
considerable amount of unlabeled data. As such, it is extremely difficult to debug a corrupted MOD file.
To illustrate the MOD file, an example example schematic is shown in figure C-1. The associated MOD
file is shown in figure C-2 and described below.

FEB 15, 1996
16:34

CASE/A v5.0
MSFC ---------CASE NAME

ATC_1
---------SUBSYSTEM

ATC
---------CABIN ENV
** NONE **

PUM P
P - 1

CP

L O AD - 1

T B U S

PA Y L O AD

C N TR L L R
C - 1

Figure C-1. Example subsystem schematic.

121

 4 5 0 0 0 0 0 0 24 19 22 15 15 121
ATC 27 P-1 301 426 0 270 5 0 0 1
ATC 32 LOAD-1 651 206 0 0 3 0 0 2
ATC 33 PAYLOAD 650 554 0 90 3 0 0 3
ATC 50 C-1 607 420 0 0 3 0 0 4
 1 2 2 1 0 2 301 206 0 0 0 0 0 0 0 0
 1 600
 2 -2 4 2 0 2 698 420 0 0 0 0 0 0 0 0
 1 600
 4 1 1 99 0 3 452 420 452 446 0 0 0 0 0 0
 1 600
 2 2 3 1 0 2 736 206 0 0 0 0 0 0 0 0
 1 600
 3 2 1 1 0 2 301 570 0 0 0 0 0 0 0 0
 1 600

Figure C-2. Example model description file (.MOD FILE).

 Model File Description :

Line 1—This header line contains general information about the model. There are 14 items as
follows:

 Item Description Example
1) number of components in model (4)
2) number of connections (5)
3) number of labels (0)
4) number of subsystems assigned to cabins (0)
5) number of cabins with assigned subsystems (0)
6) number of SPLIT components (0)
7) number of BLACKBOX components(0)
8) number of notes (0)
9) record number of LABELS data base (24)
10) record number of CONTROL data base (19)
11) record number of PLOT data base (22)
12) record number of USERCON data base (15)
13) record number of ARCHIVE data base (15)
14) not currently in use (121)
Note that the remaining lines in this file are grouped according to items (1) through (8)
above. In other words, the components are listed first, then all of the connections,
followed by labels, etc.

Lines 2 to 5—These lines are a listing of all components in the model. Initially, the order of the
components depends upon the order in which they were located in the model. After a solution has been
invoked, however, this list is resequenced according to the component priority code discussed in section
4.1.2. The ten items on each line of this section are described below (examples are for the first line
only).

 Item Description Example
1) subsystem name (8 characters) (ATC)
2) equipment type (ITYPE) (27)
3) component name (8 characters) (P-1)
4) x-coordinate (0,0 at lower left of screen) (301)
5) y-coordinate (0,0 at lower left of screen) (426)
6) cabin assignment info (by bits) (0)

122

7) orientation angle (IROT) (270)
8) record number in respective data base (5)
9) unused (0)
10) unused (0)
11) equipment number (1)

Lines 6 to 10—These lines contain connection information. The 18 items are described below:

 Item Description Example
1) component “A” (1)
2) stream “A” (2)
3) component “B” (2)
4) stream “B” (1)
5) unused (0)
6) number of segments (2)
7, 8) (x,y) of intermediate point 1 (301) (206)
9, 10) (x,y) of intermediate point 2 (0) (0)
11, 12) (x,y) of intermediate point 3 (0) (0)
13, 14) (x,y) of intermediate point 4 (0) (0)
15, 16) (x,y) of intermediate point 5 (0) (0)
17) equivalent length (feet) (1)
18) equivalent diameter (hundredths of inch) (600)

The next section of the MOD file is normally reserved for stream label data. Recall from the
header line, however, that there are no lables in this model. One can determine the details of this section
by examination of LOADCASE.FOR and using the appendix B, common block variables, as a
reference.

The remaining section of the .MOD file can contain BLACKBOX component data and NOTE
data neither of which are present in this model. There are three types of notes: C is a note centered at
(x,y) containing 4 strings 20 characters long; L is a note left justified at (x,y) containing 4 strings of 20
characters, and N is a note left justified at (x,y) containing 1 string of 80 characters. The format for the
NOTE information:

 Item Description
1) subsystem name
2) note type
3) character size, 1-4 (4 is smaller)
4) string(s), total of 80 characters
5) x-coordinate
6) y-coordinate

123

124

APPENDIX D. INDEX OF CASE/A SUBROUTINES

This appendix contains a listing of all CASE/A FORTRAN subroutines and the pages of this
manual where descriptions of the routines can be found.

 ROUTINE PAGE

CASEAMAIN .. 37
Function DEWPT(PARTIAL_PRESS).. 56
Function ROWATER(TEMP).. 59
Function SATPR(TEMP) ... 81
Subroutine ADSORPTN .. 84
Subroutine AFSPE.. 85
Subroutine ARCHFILE.. 61
Subroutine ARCHIVE.. 61
Subroutine ASSIGN ... 53
Subroutine BCK_GD_CLR(IBACKGD)... 17
Subroutine BDN (IX, IY, K, IROT,ISTM) .. 13
Subroutine BDNSHT (IX, IY, K, IROT,ISTM) .. 13
Subroutine BENCH(M,X).. 55
Subroutine BIVAR(X,Y,A,Z) .. 55
Subroutine BLF (IX, IY, K, IROT,ISTM) ... 14
Subroutine BLFSHT (IX, IY, K, IROT,ISTM).. 14
Subroutine BLOCK (IXSIZ, IYSIZ, IX, IY, IROT) .. 14
Subroutine BMR .. 85
Subroutine BOSCH .. 85
Subroutine BRT (IX, IY, K, IROT,ISTM)... 14
Subroutine BRTSHT (IX, IY, K, IROT,ISTM) ... 14
Subroutine BUP (IX, IY, K, IROT,ISTM)... 14
Subroutine BUPSHT (IX, IY, K, IROT,ISTM) ... 15
Subroutine CABIN ... 85
Subroutine CAP.. 85
Subroutine CDCODE (CLINEJ, LOC, ITYP, IWORD, IDATA, IERR) 28
Subroutine CDEL(NEA,NEB,ISTR).. 55
Subroutine CDELA(NEA,NEB,ISTR) .. 55
Subroutine CEDIT(IEDIT) .. 27
Subroutine CFIELD (CLINEJ, LOC, ICOLL, ICOLH, IERR) ... 28
Subroutine CFR.. 86
Subroutine CHX ... 86
Subroutine CILLCHAR(CISC,LEN,CHRFLG) .. 55
Subroutine CIRCLE (IRAD, IX, IY) ... 15
Subroutine CLDRAI (NDATE, NYR, NMO, NDA) ... 28
Subroutine CLDRIA (NYR, NMO, NDA, NDATE) ... 28
Subroutine CLOADCASE(NAME) ... 7, 25
Subroutine CMPOPEN .. 25
Subroutine CNEWCASE(NAME) ... 8
Subroutine CNHX .. 86
Subroutine CNTRLLR ... 86
Subroutine COLOR(INDEX)... 17
Subroutine COMPDP(NSTM,NSI,NSO,DP)... 80
Subroutine CONDP(NEA,NSA,NEB,NSB,NC).. 79
Subroutine CONECT.. 16
Subroutine CONINIT ... 55
Subroutine COPY(NUMSTM,CFLAG) .. 77
Subroutine COPYA(NUMSTM).. 77
Subroutine COPYALL ... 9
Subroutine CORRECT(NC)... 56

125

 ROUTINE PAGE

Subroutine CP .. 87
Subroutine CREADAL (CLINEJ, ICOLL, ICOLR, IDATA, IERR) .. 28
Subroutine CREADALC (CLINEJ, ICOLL, ICOLR, IWORD, CDATA, IERR)......................... 28
Subroutine CREADFL (CLINEJ, ICOLL, ICOLR, DATA, IERR) .. 29
Subroutine CREADIN (CLINEJ, ICOLL, ICOLR, IDATA, IERR) ... 29
Subroutine CREW.. 87
Subroutine CTOLOWERC(CCHAR,NCHAR) ... 56
Subroutine CTOUPPERC(CCHAR,NCHAR) ... 56
Subroutine CUTALL.. 9
Subroutine DCLFOR.. 52
Subroutine DEFLOW... 87
Subroutine DEHUM... 87
Subroutine DEL(IREC).. 56
Subroutine DELCAS.. 7
Subroutine DELCN .. 16
Subroutine DELEQ(ICUT) .. 9
Subroutine DELLAB(ICUT).. 9
Subroutine DELNOTE(ICUT) ... 10
Subroutine DELREC (IRECL, IRECH)... 29
Subroutine DENVIS(NEA,NSA,NEB,NSB,DEN,VIS) .. 56
Subroutine DINTER(X,A,Y).. 56
Subroutine DIR .. 7
Subroutine DIST (IX1, IY1, IX2, IY2, XD) .. 56
Subroutine DPCS(IEQA,ISTA,IEQB,ISTB,NCPT) .. 38
Subroutine DRAWC (KEQ)... 15
Subroutine DRLABL (KLAB, MEQ) .. 10
Subroutine DRNOTE (K)... 10
Subroutine DUPLICATE(IREC,JREC) ... 57
Subroutine EDC.. 87
Subroutine EDT.. 53
Subroutine EQLOAD ... 26
Subroutine EQOPEN (ITYPE)... 26
Subroutine EQSOLVE ... 38
Subroutine ERRDUMP(ITEST) .. 57
Subroutine EVAP ... 88
Subroutine FIELD (ICOM, LOC, ICOLL, ICOLH, IERR) ... 29
Subroutine FILREC (IA, IDATA) ... 29
Subroutine FILTER.. 88
Subroutine FINDC(IEQ) .. 57
Subroutine FINDRM (IREC) ... 29
Subroutine FLAG ... 52
Subroutine FLOLEG(XM,DEN,VIS,XL,XD,XK,PDEL,MAX) ... 57
Subroutine FRAME1.. 17
Subroutine FRICTDP(SDEN,SVIS,SXL,SXD,XMDOT,DPX) .. 79
Subroutine GETC(NAME,ISTR,ICONST,VALUE) ... 73
Subroutine GETI(NAME,IEQVAL) .. 73
Subroutine GETK(NAME,ICON,VALUE) ... 73
Subroutine GETP(NAME,ISTR,VALUE)... 73
Subroutine GETT(NAME,ISTR,VALUE) .. 74
Subroutine GETU(ILOC,VALUE) .. 74
Subroutine GIMAG(IEQB,ISTB,NCPT,PDEL,MAX,GIX).. 57
Subroutine GRALPH.. 18
Subroutine GRCHRZ (ISIZ) .. 18
Subroutine GRCOPY ... 18
Subroutine GRCUSR (ICHAR, IX, IY) ... 18
Subroutine GRDRAW (IX, IY).. 18

126

 ROUTINE PAGE

Subroutine GRERAS.. 18
Subroutine GRINIT.. 18
Subroutine GRLBAB (IX, IY, ISTRING, LSTRING) .. 18
Subroutine GRLBCT (IX, IY, ISTRING, LSTRING) ... 18
Subroutine GRMOVE (IX, IY) .. 18
Subroutine GRSCREEN(IWIDE) .. 19
Subroutine H2OSEP... 88
Subroutine HATCH.. 88
Subroutine HEADER ... 41
Subroutine HEATER.. 88
Subroutine HELP.. 52
Subroutine HIT (IX, IY, JEQ, NSTR,IXC,IYC).. 17
Subroutine HITBOX(IX,IY,IXOFF,IYOFF,ISTM) .. 15
Subroutine HX.. 89
Subroutine INTER(X,A,Y) .. 57
Subroutine IONEXCH.. 89
Subroutine ITEMIO (ITEM, IA).. 30
Subroutine ITMOUT(ITEM,IA,IOUT).. 26
Subroutine KAM2AS (NCHAR, KA4, KADE) .. 30
Subroutine KAS2AM (NCHAR, KADE, KA4) .. 30
Subroutine KHECK(NUSTM) ... 57
Subroutine KHECKA(NUSTM) .. 58
Subroutine LABL ... 10
Subroutine LBIT (NS, NL, IW, IV) ... 30
Subroutine LIOH.. 89
Subroutine LISOPEN ... 26
Subroutine LOADCOND(IEQA,ISTA,IEQB,ISTB,XM,DP) ... 58
Subroutine LOCATE.. 10
Subroutine LTSEMCIR (IRAD, IX, IY, IOFF, IROT).. 15
Subroutine MASSFRAC(NUM,YI,XMWI,XI) ... 58
Subroutine MERGE.. 54
Subroutine MNETWK.. 81
Subroutine MODBAK.. 58
Subroutine MODULE .. 89
Subroutine MOLEFRAC(NUM,PRESSI,YI) .. 58
Subroutine MOLSIEV.. 89
Subroutine MOVALL .. 11
Subroutine MOVEIT.. 11
Subroutine MOVLAB .. 11
Subroutine MOVNOTE.. 11
Subroutine MSPLT .. 90
Subroutine MVBITS (ISORC, ISTRT1, ILEN, IDEST, ISTRT2) .. 30
Subroutine NODE .. 90
Subroutine NOTE... 12
Subroutine O2N2.. 90
Subroutine OPS0 .. 67
Subroutine OPS1 .. 67
Subroutine OPS2 .. 67
Subroutine OPS3 .. 67
Subroutine OPS4 .. 67
Subroutine OPS5 .. 68
Subroutine OPS6 .. 68
Subroutine OPS7 .. 68, 90
Subroutine PASSIVE(NSTM,NSI,NSO) ... 58
Subroutine PDEL(NS).. 58
Subroutine PIPE ... 90

127

 ROUTINE PAGE

Subroutine PIPEDP(NSTM,NSI,NSO,XL,D).. 80
Subroutine PLTDATA(NUM,PLD_ERR) ... 43
Subroutine PLTFILE(IA,PLF_ERR) ... 43
Subroutine POINTCON ... 58
Subroutine PREPRO .. 59, 74
Subroutine PREWAST... 91
Subroutine PRNTSS... 41
Subroutine PROPS(NE,NS,NC) .. 81
Subroutine PSEUDO.. 39
Subroutine PSPEC(NSTR,PRESS).. 80
Subroutine PTMOD.. 26
Subroutine PULLSTX.. 59
Subroutine PUMP .. 91
Subroutine PUSHSTX.. 59
Subroutine PWVSUM.. 41
Subroutine QEXCHG(IQ,FAE,GCONV,GCOND,TRAD,TCONV,TCOND).............................. 59
Subroutine RACK .. 91
Subroutine RAD ... 91
Subroutine RANDIN(ILOCK,IUNIT,IREC,IA,NWD) ... 26
Subroutine RBIVAR(X,Y,A,Z).. 59
Subroutine RBYTE (IBYTE, IVAL, IARY).. 31
Subroutine READAL (ICOM, ICOLL, ICOLH, IWORDS, IDATA, IERR)................................ 31
Subroutine REDRAW(JFLAG).. 12
Subroutine RESET1 (IREC) .. 19
Subroutine RESTOR (IRECL,IRECH).. 31
Subroutine RETRIEVE .. 61
Subroutine RINTER(Y,A,X).. 59
Subroutine RNSS.. 12
Subroutine RO.. 91
Subroutine ROTATE.. 12
Subroutine RTSEMCIR (IRAD, IX, IY, IOFF, IROT).. 16
Subroutine SABAT .. 92
Subroutine SAVE ... 8, 27
Subroutine SAVEAS(NAME).. 8, 60
Subroutine SAWD.. 92
Subroutine SBYTE (IBYTE, IVAL, IARY) .. 31
Subroutine SCALE(IST) .. 60
Subroutine SCALER(ISTRM,NSTRM,DESFLW,ALWFLOW) .. 60
Subroutine SCREDT(IEDIT) ... 27
Subroutine SEMIRECT(IH,IW,IX,IY,IROT).. 16
Subroutine SEQUENCE(NAME) .. 39
Subroutine SETC(NAME,ISTR,ICONST,VALUE).. 74
Subroutine SETK(NAME,ICON,VALUE).. 74
Subroutine SETP(NAME,ISTR,VALUE).. 74
Subroutine SETT(NAME,ISTR,VALUE) ... 74
Subroutine SETU(ILOC,VALUE) ... 74
Subroutine SFWE... 92
Subroutine SINK .. 92
Subroutine SMVBITS (IVAL1, ISTART, ILEN, IVAL2 ITO) .. 31
Subroutine SOLVE .. 39
Subroutine SORTIEQ .. 40
Subroutine SOURCE.. 92
Subroutine SSOUT(NA) .. 42
Subroutine SUBSYS .. 13
Subroutine SUM... 92
Subroutine SUMINIT... 60

128

 ROUTINE PAGE

Subroutine SUMMARY... 42
Subroutine SYSBAL .. 76
Subroutine SYSCLK (NDATE, NTIME) .. 32
Subroutine TANK .. 93
Subroutine TBOUND(IQ,TRAD,TCONV,TCOND) .. 60
Subroutine TBUS ... 93
Subroutine TDEL(NS).. 60
Subroutine TDELA(NS) .. 60
Subroutine TEK_ADV ... 19
Subroutine TEK_HOM .. 19
Subroutine TIMESC... 93
Subroutine TIMER ... 93
Subroutine TIMESTEP(TSTEP,N,GSUM,CAPAC,TAU,MINILPS) ... 61
Subroutine TNETWK(MAX, RELAX, TSTEP, G1, G2, G3, G4, G5, FAE, G7, G8, CAP,

QMASS, QSHEL, TRAD, TCONV, TCOND, TIN, TMI, TOUT, TWAL,
TMAS, TSHEL, IC)... 80

Subroutine TNETWK2(MAX, RELAX, TSTEP, G1, G2, G3, G4, G5, FAE, G7, G8, CAP,
QMASS, QSHEL, TRAD, TCONV, TCOND, TIN, TMI, TOUT, TWAL,
TMAS, TSHEL, IC) ..80

Subroutine TRANSBOD (JEQ, IXC, IYC).. 19
Subroutine TRANSCON(JEQ, NSTR, IXC, IYC) .. 19
Subroutine TRANSLT (IX, IY, IROT, IARRAY, JARRAY) ... 19
Subroutine TRANSLT1(JEQ,KEQ)... 20
Subroutine TSTEP(A,B,C,D) ... 61
Subroutine TYCON (IA, BI) .. 32
Subroutine UNASSIGN ... 54
Subroutine VALVE.. 93
Subroutine VCD ... 94
Subroutine VISC(C,W,T0,XMU0,T,XMU)... 81
Subroutine WASH.. 94
Subroutine WQM ... 94
Subroutine WRITCON... 42

